POCT06
Effects of Different Sample Types on Glucose Measurements

This report provides information to assist the clinical and point-of-care staff in result and measurement procedure comparisons of glucose tests.

A CLSI report for global application.
Clinical and Laboratory Standards Institute

Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Standards Development Policies and Processes.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org
Effects of Different Sample Types on Glucose Measurements

Mary C. Coyle, MS, MT(ASCP) John J. Mahoney
Ellis Jacobs, PhD, DABCC, FACB Ronald H. Ng, PhD, DABCC, FACB
Ann Chappie, MT(HHS) Donald R. Parker, PhD, DABCC, FACB, CLASCB
Jeff Dahlen, PhD David B. Sacks, MD
Bradley S. Karon, MD, PhD Steven Scott

Abstract

Clinical and Laboratory Standards Institute document POCT06—Effects of Different Sample Types on Glucose Measurements provides information to assist the clinical and point-of-care staff in understanding the potential impact of the use of different sample types on results and measurement procedure comparisons of glucose test systems. The information includes preexamination, examination, and physiological considerations. This report will help clinicians understand how to better design evaluation protocols for technology or devices under consideration. Use of this report by clinicians will also help ensure that even those who adopt new technologies early will do so with the knowledge that ensures patient safety. Use of this report by manufacturers will help ensure they can meet and understand customer requirements in their product design for glucose testing systems.

The impacts of sample type, test methodology, calibration, sample transportation or delay in testing, and frequency are reviewed. The influence of metabolic changes was minimally addressed in CLSI document POCT12 and will be expanded upon here in order to help clinicians understand how to decide if metabolic changes are influencing result variances noted in a comparison.

Contents

Abstract .. i
Committee Membership.. iii
Foreword .. vii
Chapter 1: Introduction... 1
 1.1 Scope... 1
 1.2 Background .. 1
 1.3 Standard Precautions ... 2
 1.4 Terminology .. 2
Chapter 2: Sample Types .. 7
 2.1 Blood.. 10
 2.2 Urine ... 11
 2.3 Interstitial Fluid .. 12
 2.4 Sampling Site .. 13
 2.5 Other Sample Types ... 15
Chapter 3: Glucose Detection Methods ... 17
 3.1 In Vitro – Liquid Phase Reagent Systems ... 17
 3.2 In Vivo Measurement Procedures ... 21
Chapter 4: Calibration Standardization ... 25
 4.1 Calibration Guidelines .. 25
Chapter 5: Factors That Influence Results Comparison ... 27
 5.1 Interfering Substances ... 27
 5.2 Physiological/Pathophysiological Factors ... 27
 5.3 Sample Collection Techniques ... 28
 5.4 Analytical Factors ... 30
 5.5 Postexamination Factors ... 31
Chapter 6: Performance Criteria for Glucose Measurement Systems .. 33
 6.1 Criteria for Analytical Error .. 33
 6.2 Clinical Error Criteria for Glucose Measurement Systems .. 35
Chapter 7: Conclusion ... 40
Chapter 8: Supplemental Information ... 40
 References.. 40
The Quality Management System Approach ... 48
Related CLSI Reference Materials ... 49
Foreword

A variety of glucose test methodologies exist today. Processes for glucose testing in the continuum of care can vary by sample type and methodologies. Clinicians today review glucose results obtained using different methodologies even when the patient is in a single unit of the hospital. It is typical for the patient’s chart to include glucose meter system results, as well as laboratory analyzer glucose results. The glucose sample could also be drawn from arterial, capillary, or venous blood and performed on whole blood, plasma, or serum. Any or all of these methodological and sample type variations (as well as user technique, reagent stability, sample handling, site of sampling, and testing environment issues, among other contributing sources of variation) can affect glucose test results.

Laboratorians and clinicians may also conduct comparison studies from time to time, either to evaluate a new or novel technology, or to understand how glucose measurement procedures in their facility relate to one another. As care practices evolve, this report will help inform the study investigator of factors that influence glucose measurement procedure comparisons. For example, hospitals are currently experiencing increased testing frequency for bedside (point-of-care) glucose testing. More frequent hospital use of this method of testing is driven by the use of insulin to maintain an inpatient in euglycemia (tight glycemic control). Although these protocols vary in execution, the typical time interval between glucose tests is determined by the patient’s response to the insulin administration. This time interval typically varies from 15 minutes to four hours. A need exists to optimize staff efficiency, minimize patient discomfort, and assure the quality and accuracy of the glucose results while executing these protocols. This document can serve to identify possible causes of differences in glucose test results when different measurement technologies, sampling sites, and/or sample types are used.

The authors of this document acknowledge that trueness, repeatability, and reproducibility of glucose methodologies vary. This document provides guidance on the potential sources of error or variation in glucose test results, particularly when the results are obtained with two different measurement procedures using two different sample types (eg, comparing laboratory venous plasma glucose to meter system capillary whole-blood glucose results).

Key Words

Calibration, glucose, glucose monitors, point-of-care testing, sample types, test measurement procedure comparison
Effects of Different Sample Types on Glucose Measurements

Chapter 1: Introduction

This chapter includes:

- Document scope and applicable exclusions
- Background information pertinent to the document content
- Standard precautions information
- “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions
- Terms and definitions used in the document
- Abbreviations and acronyms used in the document

1.1 Scope

This report is designed to help clinicians, system evaluators, regulators, and manufacturers understand the influence of various parameters on glucose test result comparisons and to understand the clinical challenges that exist when glucose methodologies, sample types, and user techniques differ. This report is intended to help discern whether or not a difference between glucose results is caused by 1) the test measurement procedure(s), 2) patient-specific interferences, 3) the protocol, or 4) by some combination of these factors. It also includes consideration for sample type, fluid compartments, physiology, and calibration of the devices.

The intended users of this report are clinicians, point-of-care teams, pathologists, laboratory directors, and manufacturers of glucose testing devices. The information will help users to understand the clinical challenges that exist within the continuum of care when glucose is measured using different methodologies and sample types.

This report is not intended to be used for measurement procedure validation of new technologies.

1.2 Background

Glucose test result comparisons occur in two distinct types of circumstances: single result-to-result comparisons or test measurement procedure evaluations using multiple sample comparisons. In the single result-to-result scenario, a clinician is interested in determining the accuracy of glucose measurement results of the measurement procedure (eg, blood glucose monitoring system [BGMS]) she/he routinely uses for intervention decisions, by direct comparison to the results obtained using a different measurement procedure (eg, a laboratory serum glucose). In the measurement procedure evaluation study, a glucose measurement system assessment is being conducted to understand the differences between two or more measurement procedures. Several factors influence these comparisons. Taking testing differences into consideration during product development continues to help manufacturers provide new testing solutions that better meet the needs of the clinicians and contribute to improved patient care and confidence.
1.3 Standard Precautions

Because it is often impossible to know what isolates or specimens might be infectious, all patient and laboratory specimens are treated as infectious and handled according to “standard precautions.” Standard precautions are guidelines that combine the major features of “universal precautions and body substance isolation” practices. Standard precautions cover the transmission of all known infectious agents and thus are more comprehensive than universal precautions, which are intended to apply only to transmission of bloodborne pathogens. The Centers for Disease Control and Prevention (CDC) addresses this topic in published guidelines that address the daily operations of diagnostic medicine in humans and animals while encouraging a culture of safety in the laboratory. For specific precautions for preventing the laboratory transmission of all known infectious agents from laboratory instruments and materials and for recommendations for the management of exposure to all known infectious diseases, refer to CLSI document M29.

1.4 Terminology

1.4.1 A Note on Terminology

CLSI, as a global leader in standardization, is firmly committed to achieving global harmonization wherever possible. Harmonization is a process of recognizing, understanding, and explaining differences while taking steps to achieve worldwide uniformity. CLSI recognizes that medical conventions in the global metrological community have evolved differently in the United States, Europe, and elsewhere; that these differences are reflected in CLSI, International Organization for Standardization (ISO), and European Committee for Standardization (CEN) documents; and that legally required use of terms, regional usage, and different consensus timelines are all important considerations in the harmonization process. In light of this, CLSI’s consensus process focuses on harmonization of terms to facilitate the global application of standards and guidelines.

In Subchapter 6.1.3 of this report, the term “system accuracy” is used when discussing the minimum performance criteria for BGMS found in ISO 15197. The criteria for system accuracy were established from the measurement procedure requirements (precision and trueness) for individual glucose results. The concept of “system accuracy” includes measurement bias and measurement precision. System accuracy describes the ability of a glucose monitoring system to produce measurement results that agree with true glucose values when the system is used as intended. The term “trueness” is also used in this document, as appropriate, when discussing the closeness of agreement between the average value obtained from large series of results of measurement and a true value.

1.4.2 Definitions

accuracy (measurement) – closeness of agreement between a measured quantity value and a true quantity value of a measurand (JCGM 200:2012).

analyte – component represented in the name of a measurable quantity (ISO 17511); NOTE 1: In the type of quantity “mass of protein in 24-hour urine,” “protein” is the analyte. In “amount of substance of glucose in plasma,” “glucose” is the analyte. In both cases, the long phrase represents the measurand (ISO 17511); NOTE 2: In the type of quantity “catalytic concentration of lactate dehydrogenase isoenzyme 1 in plasma,” “lactate dehydrogenase isoenzyme 1” is the analyte (ISO 18153).

bias – difference between the expectation of the test results and an accepted reference value (ISO 5725-1).

calibration – operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and, in a second step, uses this information to
The Quality Management System Approach

Clinical and Laboratory Standards Institute (CLSI) subscribes to a quality management system (QMS) approach in the development of standards and guidelines, which facilitates project management; defines a document structure via a template; and provides a process to identify needed documents. The QMS approach applies a core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any health care service’s path of workflow (ie, operational aspects that define how a particular product or service is provided). The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The QSEs are as follows:

- Organization
- Customer Focus
- Facilities and Safety
- Personnel
- Purchasing and Inventory
- Process Management
- Equipment
- Documents and Records
- Information Management
- Nonconforming Event Management
- Assessments
- Continual Improvement

POCT06 addresses the QSE indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section on the following page.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Customer Focus</th>
<th>Facilities and Safety</th>
<th>Personnel</th>
<th>Purchasing and Inventory</th>
<th>Process Management</th>
<th>Equipment</th>
<th>Documents and Records</th>
<th>Information Management</th>
<th>Nonconforming Event Management</th>
<th>Assessments</th>
<th>Continual Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP41 GP43 M29</td>
<td>GP41</td>
<td>GP41</td>
<td>GP41</td>
<td>GP39 GP41 GP42 GP43 GP44</td>
<td>POCT05 POCT12 POCT13</td>
<td>GP43</td>
<td>POCT12 POCT13</td>
<td>GP43</td>
<td>POCT12</td>
<td>GP43</td>
<td>GP43</td>
</tr>
</tbody>
</table>

Path of Workflow

A path of workflow is the description of the necessary processes to deliver the particular product or service that the organization or entity provides. A laboratory path of workflow consists of the sequential processes: preexamination, examination, and postexamination and their respective sequential subprocesses. All laboratories follow these processes to deliver the laboratory’s services, namely quality laboratory information.

POCT06 addresses the clinical laboratory path of workflow steps indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section on the following page.

<table>
<thead>
<tr>
<th>Preexamination</th>
<th>Examination</th>
<th>Postexamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination ordering</td>
<td>Sample collection</td>
<td>Sample transport</td>
</tr>
<tr>
<td>GP41 GP43</td>
<td>GP41</td>
<td>GP41</td>
</tr>
<tr>
<td>GP41 GP43</td>
<td>GP41</td>
<td>GP41</td>
</tr>
<tr>
<td>GP41 GP43 M29</td>
<td>GP41</td>
<td>GP41</td>
</tr>
</tbody>
</table>
Related CLSI Reference Materials*

EP07
Interference Testing in Clinical Chemistry. 2nd ed., 2005. This document provides background information, guidance, and experimental procedures for investigating, identifying, and characterizing the effects of interfering substances on clinical chemistry test results.

EP32
Metrological Traceability and Its Implementation. 1st ed., 2006. This document provides guidance to manufacturers for establishing and reporting metrological traceability.

GP39

GP41
Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture. 6th ed., 2007. This document provides procedures for the collection of diagnostic specimens by venipuncture, including line draws, blood culture collection, and venipuncture in children.

GP42
Procedures and Devices for the Collection of Diagnostic Capillary Blood Specimens. 6th ed., 2008. This document provides a technique for the collection of diagnostic capillary blood specimens, including recommendations for collection sites and specimen handling and identification. Specifications for disposable devices used to collect, process, and transfer diagnostic capillary blood specimens are also included.

GP43
Procedures for the Collection of Arterial Blood Specimens. 4th ed., 2004. This document provides principles for collecting, handling, and transporting arterial blood specimens to assist with reducing collection hazards and ensuring the integrity of the arterial specimen.

GP44
Procedures for the Handling and Processing of Blood Specimens for Common Laboratory Tests. 4th ed., 2010. This document includes criteria for preparing an optimal serum or plasma sample and for the devices used to process blood specimens.

M29
Protection of Laboratory Workers From Occupationally Acquired Infections. 4th ed., 2014. Based on US regulations, this document provides guidance on the risk of transmission of infectious agents by aerosols, droplets, blood, and body substances in a laboratory setting; specific precautions for preventing the laboratory transmission of microbial infection from laboratory instruments and materials; and recommendations for the management of exposure to infectious agents.

POCT05
Performance Metrics for Continuous Interstitial Glucose Monitoring. 1st ed., 2008. This document provides consensus guidelines for health care professionals, in vitro diagnostic (IVD) and medical device manufacturers, and regulatory agencies on how continuous glucose monitor (CGM) data should be: 1) presented; 2) compared between devices; and 3) compared between measurement technologies.

POCT12

POCT13

* CLSI documents are continually reviewed and revised through the CLSI consensus process; therefore, readers should refer to the most current editions.
Explore the Latest Offerings From CLSI!

As we continue to set the global standard for quality in laboratory testing, we are adding products and programs to bring even more value to our members and customers.

By becoming a CLSI member, your laboratory will join 1,600+ other influential organizations all working together to further CLSI’s efforts to improve health care outcomes. You can play an active role in raising global laboratory testing standards—in your laboratory, and around the world.

Find out which membership option is best for you at www.clsi.org/membership.

Find what your laboratory needs to succeed! CLSI U provides convenient, cost-effective continuing education and training resources to help you advance your professional development. We have a variety of easy-to-use, online educational resources that make eLearning stress-free and convenient for you and your staff.

See our current educational offerings at www.clsi.org/education.

When laboratory testing quality is critical, standards are needed and there is no time to waste. eCLIPSE™ Ultimate Access, our cloud-based online portal of the complete library of CLSI standards, makes it easy to quickly find the CLSI resources you need.

Learn more and purchase eCLIPSE at shop.clsi.org/eCLIPSE-Ultimate-Access.

For more information, visit www.clsi.org today.