M57

Principles and Procedures for the Development of Epidemiological Cutoff Values for Antifungal Susceptibility Testing

This guideline includes the criteria for developing and using epidemiological cutoff values for guiding clinical decisions when testing fungal species and antifungal agent combinations for which there are no breakpoints.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeals Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeals, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Principles and Procedures for the Development of Epidemiological Cutoff Values for Antifungal Susceptibility Testing

Mahmoud A. Ghannoum, MSc, PhD, EMBA
Maiken Cavling Arendrup, MD, PhD
Steven D. Brown, PhD, D(ABMM)
Ana Espinel-Ingroff, PhD, MS
Shawn R. Lockhart, PhD, D(ABMM)
Mary R. Motyl, PhD, D(ABMM)
John D. Turnidge, MD

Abstract

Clinical and Laboratory Standards Institute guideline M57—Principles and Procedures for the Development of Epidemiological Cutoff Values for Antifungal Susceptibility Testing presents criteria for determining epidemiological cutoff values (ECVs) for yeasts and filamentous fungi. Data collection, ECV development, and indications for their use are discussed. This guideline provides an analysis of the criteria that determine whether an isolate has a wild-type or non-wild-type minimal inhibitory concentration/minimal effective concentration value and discusses how ECVs can be used for fungal species and antifungal agent combinations for which there are no breakpoints.

Contents

Abstract ... i
Committee Membership .. iii
Foreword ... vii
Chapter 1: Introduction ... 1
 1.1 Scope .. 1
 1.2 Terminology .. 1
Chapter 2: Using Epidemiological Cutoff Values .. 3
 2.1 Defining an Epidemiological Cutoff Value ... 3
 2.2 Indications for the Use of Epidemiological Cutoff Values ... 4
Chapter 3: Methodology for Development of Epidemiological Cutoff Values .. 7
 3.1 Epidemiological Cutoff Value Development Process ... 7
 3.2 Data Collection ... 7
 3.3 Selecting an Epidemiological Cutoff Value ... 9
 3.4 Determining Criteria for Revision of an Epidemiological Cutoff Value .. 10
 3.5 Using Epidemiological Cutoff Values in the Diagnostic Microbiology Laboratory 10
Chapter 4: Conclusion ... 12
Chapter 5: Supplemental Information ... 12
 The Quality Management System Approach ... 14
 Related CLSI Reference Materials .. 15
Foreword

Breakpoints are the most reliable tool for predicting whether a given antimicrobial agent will be active against an infecting isolate. Breakpoints are developed using pharmacokinetic/pharmacodynamic analysis, clinical trial outcome data, standard distributions of minimal inhibitory concentration (MIC) values as obtained by a reference method, and postmarketing susceptibility data. Quite often, for many fungal species and antifungal agent combinations, the only available data are the distribution of MIC/minimal effective concentration (MEC) values. MIC/MEC distributions are used to determine the epidemiological cutoff value (ECV) that defines the upper limit of the wild-type (WT) distribution. Although MIC/MEC distributions are not sufficient for breakpoint development, these cutoff values can be useful for distinguishing between WT isolates (ie, those having no acquired resistance mechanisms) and non-wild-type (NWT) isolates (ie, those having presumptive acquired resistance mechanisms). In this regard, ECVs distinguish between organisms with and without phenotypically expressed resistance mechanisms for a fungal species and an antifungal agent in a defined test system. Moreover, within a species, it is the highest MIC/MEC of an organism lacking phenotypically expressed resistance. ECVs can be considered in the absence of formal breakpoints.

As a result, the Subcommittee on Antifungal Susceptibility Tests determined a document was needed that:

- Defines how to develop an ECV
- Distinguishes between ECVs and breakpoints
- Lists, in a supplement, ECVs for available fungal species and antifungal agent combinations
- Provides guidance on the use of ECVs for the interpretation of MIC/MEC values for fungal species and antifungal agent combinations for which there are no breakpoints
- Provides epidemiologists with ECVs that are useful for performing surveillance testing locally, regionally, or globally to evaluate any changes in MIC patterns over time

This guideline defines the protocol for ECV development. It provides assistance to clinicians and laboratory directors for fungal species and antifungal agent combinations for which there are no breakpoints or the data needed to develop them. Additionally, M57 provides information for developing and interpreting ECVs so clinical guidance is available on the potential response to therapy of a fungal species and antifungal agent combination when only MIC/MEC values are available. This information can assist clinicians and laboratory directors in making an informed decision when an NWT organism has been isolated that may not respond to an antifungal agent as predicted from the species identification alone.

NOTE: The findings and conclusions in this guideline are those of the authors and are supported by the CLSI consensus process, and do not necessarily reflect the views of the organizations the authors represent.
Request for antifungal susceptibility testing data from fungal pathogens needed for the development of ECVs to be included in future editions of M59:

The Working Group on Antifungal Epidemiological Cutoff Values is requesting submission of raw antifungal susceptibility testing data for yeasts and filamentous fungi using the protocols provided in the most current editions of CLSI documents M27, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts and M38, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. This request is only for reference broth microdilution and should not include data generated using commercially available panels. Because the data will be combined with data from other laboratories, even a small amount of data is useful, especially for the more infrequently identified species. All species should be identified using a molecular assay or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

A standardized worksheet for data submission is available on the CLSI website at http://clsi.org/standards/micro/sub-antifungal/. This worksheet can also be requested by contacting CLSI at standard@clsi.org. Completed worksheets can be submitted to CLSI directly at standard@clsi.org.

Key Words

Acquired resistance, epidemiological cutoff value, minimal effective concentration, minimal inhibitory concentration, non-wild-type, wild-type
Principles and Procedures for the Development of Epidemiological Cutoff Values for Antifungal Susceptibility Testing

Chapter 1: Introduction

This chapter includes:

- Guideline scope and applicable exclusions
- Background information pertinent to the guideline content
- “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions
- Terms and definitions used in the guideline
- Abbreviations and acronyms used in the guideline

1.1 Scope

This guideline specifies requirements and recommendations for developing and using epidemiological cutoff values (ECVs) in antifungal susceptibility testing.

The guideline’s intended users are developers of ECVs for antifungal agents, laboratory directors who provide assistance to clinicians on interpreting antifungal minimal inhibitory concentration (MIC)/minimal effective concentration (MEC) values, and clinicians who interpret MIC/MEC values for the application of proper antifungal therapy and surveillance of emerging resistance.

This guideline:

- Is not intended to provide an equivalent to breakpoint development
- Does not discuss breakpoint development
- Is not intended to provide a replacement for breakpoints

1.2 Terminology

1.2.1 A Note on Terminology

CLSI, as a global leader in standardization, is firmly committed to achieving global harmonization whenever possible. Harmonization is a process of recognizing, understanding, and explaining differences while taking steps to achieve worldwide uniformity. CLSI recognizes that medical conventions in the global metrological community have evolved differently in different countries and regions, and that legally required use of terms, regional usage, and different consensus timelines are all important considerations in the harmonization process. CLSI recognizes its important role in these efforts, and its consensus process focuses on harmonization of terms to facilitate the global application of standards and guidelines.

In many countries, epidemiological cutoff values (ECVs) are often referred to as epidemiological cutoffs or “ECOFFs.” The terms are equivalent. In order to be consistent with other CLSI documents, including CLSI document M100S, the abbreviation “ECV” is used throughout this guideline.
NOTE: Mandates are generally reserved for CLSI standards, but are occasionally allowed in CLSI guidelines. In CLSI guidelines, use of the term “must” is either 1) based on a requirement or 2) indicative of a necessary step to ensure patient safety or proper fulfillment of a procedure. The working group evaluated use of the term “must” and deemed it appropriate.

1.2.2 Definitions

dataset – a set of minimal inhibitory or minimal effective concentration data generated in a single laboratory.

epidemiological cutoff value (ECV) – the minimal inhibitory concentration (MIC)/minimal effective concentration value that separates fungal populations into those with and without acquired and/or mutational resistance based on their phenotypes (MICs); **NOTE:** Often referred to as the “epidemiological cutoff” or “ECOFF.”

minimal effective concentration (MEC) – the lowest concentration of an antifungal agent that leads to the growth of small, rounded, compact hyphal forms as compared to the hyphal growth seen in the growth control well; **NOTE:** This terminology is currently only used with respect to testing of filamentous fungi against echinocandin antifungal agents.

minimal inhibitory concentration (MIC) – the lowest concentration of an antimicrobial agent that prevents visible growth of a microorganism in an agar or broth dilution susceptibility test.

non-wild-type (NWT) – describes isolates with presumed or known mechanisms of acquired resistance and reduced susceptibility for the antifungal agent being evaluated.

pooled dataset – minimal inhibitory concentration/minimal effective concentration susceptibility values collected according to reference method criteria and combined from multiple laboratories.

wild-type (WT) – describes isolates with no mechanisms of acquired resistance or reduced susceptibility for the antifungal agent being evaluated.

wild-type distribution – the distribution of minimal inhibitory concentration/minimal effective concentration values of a given species with a given antifungal agent when there are no known mutational resistance mechanisms present in any species representatives.

1.2.3 Abbreviations and Acronyms

- **ECV** epidemicologic cutoff value
- **MEC** minimal effective concentration
- **MIC** minimal inhibitory concentration
- **NWT** non-wild-type
- **QC** quality control
- **WT** wild-type
- **WT-MIC/MEC** wild-type-minimal inhibitory concentration/minimal effective concentration
The Quality Management System Approach

Clinical and Laboratory Standards Institute (CLSI) subscribes to a quality management system (QMS) approach in the development of standards and guidelines, which facilitates project management; defines a document structure using a template; and provides a process to identify needed documents. The QMS approach applies a core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any health care service’s path of workflow (ie, operational aspects that define how a particular product or service is provided). The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The QSEs are as follows:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Personnel</th>
<th>Process Management</th>
<th>Nonconforming Event Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Focus</td>
<td>Purchasing and Inventory</td>
<td>Documents and Records</td>
<td>Assessments</td>
</tr>
<tr>
<td>Facilities and Safety</td>
<td>Equipment</td>
<td>Information Management</td>
<td>Continual Improvement</td>
</tr>
</tbody>
</table>

M57 covers the QSE indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section on the following page.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Customer Focus</th>
<th>Facilities and Safety</th>
<th>Personnel</th>
<th>Purchasing and Inventory</th>
<th>Equipment</th>
<th>Process Management</th>
<th>Documents and Records</th>
<th>Information Management</th>
<th>Nonconforming Event Management</th>
<th>Assessments</th>
<th>Continual Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M27S M38 M59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Path of Workflow

A path of workflow is the description of the necessary processes to deliver the particular product or service that the organization or entity provides. A laboratory path of workflow consists of the sequential processes: preexamination, examination, and postexamination and their respective sequential subprocesses. All laboratories follow these processes to deliver the laboratory’s services, namely quality laboratory information.

M57 does not cover any of the medical laboratory path of workflow steps. For a description of the documents listed in the grid, please refer to the Related CLSI Reference Materials section on the following page.

<table>
<thead>
<tr>
<th>Preexamination</th>
<th>Examination</th>
<th>Postexamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination activity</td>
<td>Sample collection</td>
<td>Sample transport</td>
</tr>
<tr>
<td>Sample receipt and processing</td>
<td>Examination</td>
<td>Results review and follow-up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interpretation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Results reporting and archiving</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M27 M27S M38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M59 M100S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M27 M27S M38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M59 M100S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M27 M27S M38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M59 M100S</td>
</tr>
</tbody>
</table>
Related CLSI Reference Materials

M27 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 3rd ed., 2008. This document addresses the selection and preparation of antifungal agents; implementation and interpretation of test procedures; and quality control requirements for susceptibility testing of yeasts that cause invasive fungal infections.

M38 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. 2nd ed., 2008. This document addresses the selection of antifungal agents, preparation of antifungal stock solutions and dilutions for testing implementation and interpretation of test procedures, and quality control requirements for susceptibility testing of filamentous fungi (moulds) that cause invasive and cutaneous fungal infections.

M59 Epidemiological Cutoff Values for Antifungal Susceptibility Testing. 1st ed., 2016. This document includes the epidemiological cutoff value and quality control tables developed according to criteria provided in the Clinical and Laboratory Standards Institute guideline M57.

* CLSI documents are continually reviewed and revised through the CLSI consensus process; therefore, readers should refer to the most current editions.
Explore the Latest Offerings From CLSI!

As we continue to set the global standard for quality in laboratory testing, we are adding products and programs to bring even more value to our members and customers.

By becoming a CLSI member, your laboratory will join 1,600+ other influential organizations all working together to further CLSI’s efforts to improve health care outcomes. You can play an active role in raising global laboratory testing standards—in your laboratory, and around the world.

Find out which membership option is best for you at www.clsi.org/membership.

Find what your laboratory needs to succeed! CLSI U provides convenient, cost-effective continuing education and training resources to help you advance your professional development. We have a variety of easy-to-use, online educational resources that make eLearning stress-free and convenient for you and your staff.

See our current educational offerings at www.clsi.org/education.

When laboratory testing quality is critical, standards are needed and there is no time to waste. eCLIPSE™ Ultimate Access, our cloud-based online portal of the complete library of CLSI standards, makes it easy to quickly find the CLSI resources you need.

Learn more and purchase eCLIPSE at clsi.org/eCLIPSE.

For more information, visit www.clsi.org today.