This guideline discusses the necessary and recommended data for selecting appropriate breakpoints and quality control ranges for antimicrobial agents.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advances in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI's consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeal Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeal, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters

Matthew A. Wikler, MD, MBA, FIDSA
James S. Lewis II, PharmD, FIDSA
Greg Moeck, PhD
David P. Nicolau, PharmD, FCCP, FIDSA
Michael Satlin, MD, MS

Abstract

Clinical and Laboratory Standards Institute guideline M23—Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters offers guidance for developing breakpoints and QC ranges for antimicrobial susceptibility tests against aerobic and anaerobic bacteria, as well as selected fungi, according to CLSI antimicrobial susceptibility testing standards. It describes the data used by the Subcommittees on Antimicrobial Susceptibility Testing and Antifungal Susceptibility Tests to establish these breakpoints and QC ranges for antimicrobial agents, including microbiological data, pharmacokinetic and pharmacodynamic characteristics, and clinical data. As antimicrobial agents are used in practice, additional experience accrued may be used to reassess breakpoints or QC ranges. Users of these guidelines should understand that susceptibility test results cannot predict clinical outcomes with absolute certainty. They should be used along with best clinical judgment and laboratory support to most effectively serve the patient.

Contents

Abstract .. i
Committee Membership ... iii
Foreword .. vii
Subcommittee on Antimicrobial Susceptibility Testing Mission Statement ix
Chapter 1: Introduction .. 1
 1.1 Scope ... 1
 1.2 Background ... 1
 1.3 Terminology ... 2
Chapter 2: Development of Susceptibility Tests Methods ... 7
 2.1 Establishing the Reference Method for an Antimicrobial Agent .. 7
 2.2 Antibacterial Fixed Combination Studies (Such as β-Lactam Combination Agents) 8
 2.3 Developing Disks for Disk Diffusion Tests ... 9
 2.4 Validating Microbiological Data Derived From Sources Other Than Reference Methods 9
Chapter 3: Quality Control .. 11
 3.1 Selecting Quality Control Strains .. 11
 3.2 Procedure for Establishing or Revising Quality Control Strains or Ranges 12
 3.3 Quality Control Data Presentation and Interpretation .. 16
Chapter 4: Procedures for Establishing Breakpoints ... 19
 4.1 New Breakpoints .. 20
 4.2 Revision of Breakpoints .. 23
 4.3 Provisional Breakpoints ... 27
 4.4 Periodic Breakpoint Review .. 27
 4.5 Surrogate Testing ... 29
Chapter 5: Minimal Inhibitory Concentration Breakpoints ... 31
 5.1 Epidemiological Cutoff Value .. 32
 5.2 Nonclinical Pharmacokinetic-Pharmacodynamic Cutoff .. 36
 5.3 Clinical Exposure-Response Cutoff ... 42
 5.4 Clinical Cutoff .. 44
 5.5 Consideration of the Cutoffs to Determine Breakpoints .. 46
Chapter 6: Disk Diffusion Breakpoints .. 49
 6.1 Selecting Isolates and Sample Size .. 49
 6.2 Reagent Disks ... 49
 6.3 Error-Rate Bounded Method for Selecting Disk Diffusion Breakpoints Based on Comparison With Dilution Test Results ... 49
Chapter 7: Conclusion ... 52
Chapter 8: Supplemental Information ... 52
 References ... 53
 Appendix A. Guidelines for Clinical Isolate Selection and Sample Size 55
 Appendix B. Sample Data Presentations ... 58
Contents (Continued)

Appendix C. Statement of Policy of the Antimicrobial Susceptibility Testing Subcommittees of the Clinical and Laboratory Standards Institute .. 62
Appendix D. Suggested Information to Be Covered on the Submission Cover Page 63
Appendix E. Drug “X” Minimal Inhibitory Concentration vs Zone Diameter 64
The Quality Management System Approach .. 66
Related CLSI Reference Materials .. 68
Foreword

CLSI develops standardized reference methods that measure the susceptibility of bacteria and fungi to antimicrobial agents in vitro. In this regard, the CLSI Subcommittee on Antimicrobial Susceptibility Testing (AST) is responsible for developing and updating the following CLSI susceptibility testing documents:

- M02—Performance Standards for Antimicrobial Disk Susceptibility Tests
- M07—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically
- M45—Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria
- M11—Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria
- M100—Performance Standards for Antimicrobial Susceptibility Testing (supplement for M02, M07, and M11)

The CLSI Subcommittee on Antifungal Susceptibility Tests is responsible for developing and updating the following CLSI susceptibility testing documents:

- M27—Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts
- M44—Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts
- M60—Performance Standards for Antifungal Susceptibility Testing of Yeasts (supplement for M27 and M44)
- M38—Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi
- M51—Method for Antifungal Disk Diffusion Susceptibility Testing of Nondermatophyte Filamentous Fungi
- M61—Performance Standards for Antifungal Susceptibility Testing of Filamentous Fungi (supplement for M38 and M51)

M23 is an important foundation guideline that supports these susceptibility testing documents. M23’s purpose is to provide guidance on the data submitted by sponsors and the procedures followed by the CLSI Subcommittee on AST to establish or revise QC ranges and susceptibility testing breakpoints for inclusion in CLSI documents. The process for determining breakpoints and QC ranges for antifungal agents is broadly the same as for the antibacterial agents, and the principles described in M23 also apply to antifungal agents.

This guideline recognizes that submissions may be made by a wide variety of organizations or individuals and that it is important to ensure the same processes are followed regardless of the data source. Nevertheless, it also recognizes that the extent of the data that can be provided to support new or revised breakpoints may vary significantly due to factors that include, but are not limited to, the age of the antimicrobial agent and whether the sponsor has access to raw data or only published data.
Essential Information

Content in this guideline marked with an asterisk (*) describes essential information required for review by the CLSI Subcommittee on AST. All chapters and subchapters without an asterisk describe additional information that may be supplied if available and that may be useful in supporting the selection of QC ranges and susceptibility testing breakpoints.

Overview of Changes

This guideline replaces the previous edition of the approved guideline, M23, 4th ed., published in 2016. Several changes were made in this edition, including:

- Deleted Subchapter 4.1.3 on publication of breakpoints that are different from those approved by the US Food and Drug Administration
- Added a new subchapter (Subchapter 4.4) that describes a new process for periodically reviewing established breakpoints

NOTE: The content of this guideline is supported by the CLSI consensus process and does not necessarily reflect the views of any single individual or organization.

Key Words

Antimicrobial agents, standard dilution methods for bacteria that grow aerobically, standard disk diffusion test, standard reference method for anaerobes, susceptibility testing
Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters

Chapter 1: Introduction

This chapter includes:

- Guideline’s scope and applicable exclusions
- Background information pertinent to the guideline’s content
- “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions
- Terms and definitions used in the guideline
- Abbreviations and acronyms used in the guideline

1.1 Scope

This guideline provides direction for determining breakpoints and QC parameters for antimicrobial agents that have a direct action on microorganisms. The intended audience includes sponsors (e.g., antimicrobial agent manufacturers) planning to submit data to establish or revise QC ranges and susceptibility testing breakpoints and interpretive categories for inclusion in CLSI susceptibility testing documents. The methods described do not apply to:

- Slow-growing mycobacteria, for which specific guidance is available (see CLSI document M2412)
- Antimicrobial agents formulated for direct administration to skin or mucous membranes or for inhalation
- Antimicrobial agents that are intended to exert activity within the gut lumen

Guidance presented in M23 applies only to CLSI procedures and documents.

1.2 Background

Susceptibility testing breakpoints, interpretive categories, and QC parameters are established by the CLSI Subcommittee on Antimicrobial Susceptibility Testing (AST) after comprehensive review of all available relevant data. This guideline describes the procedures to be followed by the CLSI Subcommittee on AST and by sponsors intending to submit data to facilitate timely review and decision-making processes. Data requirements to support setting new breakpoints and QC parameters and amendments to existing breakpoints are described.

The CLSI Subcommittee on AST has developed standardized methods that make it possible for laboratories to perform reliable and meaningful broth dilution and disk diffusion susceptibility testing of fungi (see CLSI documents M27,6 M38,8 M44,7 and M5110). The process for determining breakpoints, interpretive categories, and QC ranges for antifungal agents is broadly the same as for the antibacterial agents. Thus, it may be assumed that the principles described in this guideline apply equally to antifungal agents. For this reason, the guideline refers to antimicrobial agents throughout. Where reference is made to the CLSI Subcommittee on AST, in most instances the same applies to the CLSI Subcommittee on Antifungal
Susceptibility Tests. A CLSI document on the criteria for developing and using epidemiological cutoff values (ECVs) for guiding clinical decisions when testing fungi against antifungal drug combinations for which there are no breakpoints has been published (see CLSI documents M57-13 and M59-14). The principles outlined in this guideline for establishing and revising ECVs apply to antibacterial agents as well.

1.3 Termination

1.3.1 A Note on Terminology

CLSI, as a global leader in standardization, is firmly committed to achieving global harmonization whenever possible. Harmonization is a process of recognizing, understanding, and explaining differences while taking steps to achieve worldwide uniformity. CLSI recognizes that medical conventions in the global metrological community have evolved differently in different countries and regions and that legally required use of terms, regional usage, and different consensus timelines are all important considerations in the harmonization process. CLSI recognizes its important role in these efforts, and its consensus process focuses on harmonization of terms to facilitate the global application of standards and guidelines.

NOTE: Mandates are generally reserved for CLSI standards but are occasionally allowed in CLSI guidelines. In CLSI guidelines, use of the term “must” is either 1) based on a requirement or 2) indicative of a necessary step to ensure patient safety or proper fulfillment of a procedure. The subcommittee evaluated use of the term “must” and deemed it appropriate.

1.3.2 Definitions

breakpoint – minimal inhibitory concentration (MIC) or zone diameter value used to categorize an organism as susceptible, susceptible-dose dependent, intermediate, resistant, or nonsusceptible; NOTE 1: MIC or zone diameter values generated by a susceptibility test can be interpreted based upon established breakpoints; NOTE 2: See interpretive category.

clinical cutoff – a cutoff that is derived from any correlation there may be between clinical outcome and the minimal inhibitory concentrations of an antimicrobial agent(s) for the infecting pathogen(s).

clinical exposure-response (CER) cutoff – the highest minimal inhibitory concentration value at which efficacy would be predicted in patients based on CER relationships for efficacy in infected patients and on human pharmacokinetics.

epidemiological cutoff value (ECV) – the minimal inhibitory concentration (MIC) or zone diameter value that separates microbial populations into those with and without acquired and/or mutational resistance based on their phenotypes (wild-type or non-wild-type). The ECV defines the upper limit of susceptibility for the wild-type population of isolates.

EXAMPLE:

<table>
<thead>
<tr>
<th>Interpretive Category</th>
<th>MIC, µg/mL</th>
<th>Zone Diameter, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>≤ 4</td>
<td>≥ 20</td>
</tr>
<tr>
<td>Non-wild-type</td>
<td>≥ 8</td>
<td>≤ 19</td>
</tr>
</tbody>
</table>

- wild-type – an ECV interpretive category defined by an ECV that describes isolates with no mechanisms of acquired resistance or reduced susceptibility for the antimicrobial agent being evaluated.
The Quality Management System Approach

Clinical and Laboratory Standards Institute (CLSI) subscribes to a quality management system (QMS) approach in the development of standards and guidelines that facilitates project management, defines a document structure using a template, and provides a process to identify needed documents. The QMS approach applies a core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any health care service’s path of workflow (ie, operational aspects that define how a particular product or service is provided). The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The QSEs are:

- Organization
- Customer Focus
- Personnel
- Process Management
- Facilities and Safety
- Purchasing and Inventory
- Nonconforming Event Management
- Equipment
- Documents and Records
- Assessments
- Information Management
- Continual Improvement

M23 covers the QSE indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section.
Path of Workflow

A path of workflow is the description of the necessary processes to deliver the particular product or service that the organization or entity provides. A laboratory path of workflow consists of the sequential processes: preexamination, examination, and postexamination and their respective sequential subprocesses. All laboratories follow these processes to deliver their services, namely quality laboratory information.

M23 does not cover any of the medical laboratory path of workflow processes. For a description of the documents listed in the grid, please refer to the Related CLSI Reference Materials section.

<table>
<thead>
<tr>
<th>Preexamination</th>
<th>Examination</th>
<th>Postexamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination ordering</td>
<td>Sample collection</td>
<td>Sample transport</td>
</tr>
<tr>
<td>M02</td>
<td>M02</td>
<td>M02</td>
</tr>
<tr>
<td>M07</td>
<td>M07</td>
<td>M07</td>
</tr>
<tr>
<td>M11</td>
<td>M11</td>
<td>M11</td>
</tr>
<tr>
<td>M24</td>
<td>M24</td>
<td>M24</td>
</tr>
<tr>
<td>M26</td>
<td>M26</td>
<td>M26</td>
</tr>
<tr>
<td>M27</td>
<td>M27</td>
<td>M27</td>
</tr>
<tr>
<td>M38</td>
<td>M38</td>
<td>M38</td>
</tr>
<tr>
<td>M44</td>
<td>M44</td>
<td>M44</td>
</tr>
<tr>
<td>M45</td>
<td>M45</td>
<td>M45</td>
</tr>
<tr>
<td>M51</td>
<td>M51</td>
<td>M51</td>
</tr>
<tr>
<td>M59</td>
<td>M59</td>
<td>M59</td>
</tr>
<tr>
<td>M60</td>
<td>M60</td>
<td>M60</td>
</tr>
<tr>
<td>M100</td>
<td>M100</td>
<td>M100</td>
</tr>
<tr>
<td>M27</td>
<td>M27</td>
<td>M27</td>
</tr>
<tr>
<td>M38</td>
<td>M38</td>
<td>M38</td>
</tr>
</tbody>
</table>
Related CLSI Reference Materials*

M02 Performance Standards for Antimicrobial Disk Susceptibility Tests. 13th ed., 2018. This standard covers the current recommended methods for disk susceptibility testing and criteria for quality control testing.

M11 Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. 8th ed., 2012. This standard provides reference methods for the determination of minimal inhibitory concentrations of anaerobic bacteria by agar dilution and broth microdilution.

M24 Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. 2nd ed., 2011. This standard provides protocols and related quality control parameters and interpretive criteria for the susceptibility testing of mycobacteria, Nocardia spp., and other aerobic actinomycetes.

M38 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. 3rd ed., 2017. This standard includes antifungal agent selection, preparation of antifungal stock solutions and dilutions for testing, test procedure implementation and interpretation, and quality control requirements for susceptibility testing of filamentous fungi (moulds) that cause invasive and cutaneous fungal infections.

M44 Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts. 2nd ed., 2009. This document provides newly established methodology for disk diffusion testing of Candida spp., criteria for quality control testing, and interpretive criteria.

M45 Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3rd ed., 2016. This guideline informs clinical, public health, and research laboratories on susceptibility testing of infrequently isolated or fastidious bacteria that are not included in CLSI documents M02, M07, or M100. Antimicrobial agent selection, test interpretation, and quality control are addressed.

M51 Method for Antifungal Disk Diffusion Susceptibility Testing of Nondermatophyte Filamentous Fungi. 1st ed., 2010. This document describes the guidelines for antifungal susceptibility testing by the disk diffusion method of nondermatophyte filamentous fungi (moulds) that cause invasive disease.

M57 Principles and Procedures for the Development of Epidemiological Cutoff Values for Antifungal Susceptibility Testing. 1st ed., 2016. This guideline includes the criteria for developing and using epidemiological cutoff values for guiding clinical decisions when testing fungal species and antifungal agent combinations for which there are no breakpoints.

M59 Epidemiological Cutoff Values for Antifungal Susceptibility Testing. 2nd ed., 2018. This document includes the epidemiological cutoff value and quality control tables developed according to criteria provided in the Clinical and Laboratory Standards Institute guideline M57.

M60 Performance Standards for Antifungal Susceptibility Testing of Yeasts. 1st ed., 2017. This document includes updated minimal inhibitory concentration, zone diameter, and quality control tables for the Clinical and Laboratory Standards Institute antifungal susceptibility testing documents M27 and M44.

* CLSI documents are continually reviewed and revised through the CLSI consensus process; therefore, readers should refer to the most current editions.
Related CLSI Reference Materials (Continued)

M100 Performance Standards for Antimicrobial Susceptibility Testing, 28th ed., 2018. This document includes updated tables for the Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M02, M07, and M11.
Explore the Latest Offerings From CLSI!

As we continue to set the global standard for quality in laboratory testing, we are adding products and programs to bring even more value to our members and customers.

By becoming a CLSI member, your laboratory will join 1,600+ other influential organizations all working together to further CLSI’s efforts to improve health care outcomes. You can play an active role in raising global laboratory testing standards—in your laboratory, and around the world.

Find out which membership option is best for you at www.clsi.org/membership.

Find what your laboratory needs to succeed! CLSI U provides convenient, cost-effective continuing education and training resources to help you advance your professional development. We have a variety of easy-to-use, online educational resources that make eLearning stress-free and convenient for you and your staff.

See our current educational offerings at www.clsi.org/education.

When laboratory testing quality is critical, standards are needed and there is no time to waste. eCLIPSE™ Ultimate Access, our cloud-based online portal of the complete library of CLSI standards, makes it easy to quickly find the CLSI resources you need.

Learn more and purchase eCLIPSE at clsi.org/eCLIPSE.

For more information, visit www.clsi.org today.