MM12-A

Diagnostic Nucleic Acid Microarrays; Approved Guideline

This guideline provides recommendations for many aspects of the array process including: a method overview; nucleic acid extraction; the preparation, handling, and assessment of genetic material; quality control; analytic validation; and interpretation and reporting of results.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in medical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advances in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeal Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeal, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Clinical and Laboratory Standards Institute document MM12-A, Diagnostic Nucleic Acid Microarrays; Approved Guideline provides general recommendations for the operation of diagnostic nucleic acid microarrays. The recommendations cover nucleic acid extraction; preparation, handling, and assessment of genetic material; and interpretation and reporting of results. The guideline addresses array-based detection of variations in DNA sequence and gene expression analysis as it relates to: heritable variations, somatic changes, methylation profiling, pathogen profiling including antibiotic resistance analysis, expression profiling, and gene dosage/comparative genomic hybridization.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: 610.688.0100; Fax: 610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Copyright ©2006 Clinical and Laboratory Standards Institute. Except as stated below, any reproduction of content from a CLSI copyrighted standard, guideline, companion product, or other material requires express written consent from CLSI. All rights reserved. Interested parties may send permission requests to permissions@clsi.org.

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedure manual at a single site. To request permission to use this publication in any other manner, e-mail permissions@clsi.org.

Suggested Citation

Previous Edition:
July 2005

Reaffirmed:
April 2016

Archived:
January 2017

ISSN 0273-3099
Contents

Abstract .. i

Committee Membership .. iii

Foreword .. vii

1 Scope .. 1

2 Introduction ..1
 2.1 Diagnostic Microarrays ... 1
 2.2 Diagnostic Utility .. 1
 2.3 Advantages and Disadvantages ... 2
 2.4 Ethical, Legal, and Social Considerations .. 2
 2.5 Special Issues for Application of Microarray Technologies to Diagnosis 2

3 Standard Precautions ... 3

4 Terminology ... 3
 4.1 Definitions .. 3
 4.2 Acronyms/Abbreviations .. 9

5 Method Overview .. 10
 5.1 Solid Supports ... 10
 5.2 Probe Synthesis and Attachment to Support ... 11
 5.3 Signal Generation and Detection .. 14

6 Analytical Methods ... 16
 6.1 Nucleic Acid Extraction .. 16
 6.2 Gene Chemistry .. 19
 6.3 Hybridization .. 24
 6.4 Posthybridization .. 33
 6.5 Signal Generation and Detection .. 34
 6.6 Laboratory-developed (“Home-Brew”) Microarray Assay .. 35

7 Genetic Data Analysis ... 42
 7.1 Data Elements ... 42
 7.2 Heritable Changes ... 44
 7.3 Methylation Analysis ... 45
 7.4 Pathogen Profiling ... 46
 7.5 Detection of Gene Dosage Abnormalities Using Comparative Genomic Hybridization .. 47

8 Gene Expression Data Analysis ... 53
 8.1 Overview ... 53
 8.2 Data Elements ... 53
 8.3 Low-Level Analysis ... 55
 8.4 Gene Filtering and Identification of Differentially Expressed Genes 57
 8.5 High-Level Data Analysis – Unsupervised Learning Algorithms 57
 8.6 High-Level Data Analysis – Supervised Learning and Classification Procedures 58
Contents (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Validation</td>
<td>61</td>
</tr>
<tr>
<td>9.1</td>
<td>Analytical Validation</td>
<td>61</td>
</tr>
<tr>
<td>9.2</td>
<td>Diagnostic Utility</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>Quality Control/Quality Assurance</td>
<td>74</td>
</tr>
<tr>
<td>10.1</td>
<td>Preanalytical Considerations</td>
<td>76</td>
</tr>
<tr>
<td>10.2</td>
<td>Analytical Phases</td>
<td>77</td>
</tr>
<tr>
<td>10.3</td>
<td>Global QC Issues</td>
<td>82</td>
</tr>
<tr>
<td>10.4</td>
<td>Reporting</td>
<td>83</td>
</tr>
<tr>
<td>10.5</td>
<td>Quality Assurance (QA)</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Appendix A. Gene Expression Data Analysis</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Appendix B. Validation</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Appendix References</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Summary of Consensus/Delegate Comments and Committee Responses</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>The Quality System Approach</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Related CLSI/NCCLS Publications</td>
<td>109</td>
</tr>
</tbody>
</table>
Foreword

Molecular genetics has now become firmly entrenched as the third major subdiscipline of clinical laboratory medical genetics, emerging more recently than the other subspecialities, biochemical genetics and cytogenetics. Just as with any diagnostic method or test, in order to fully benefit the patient, it must be developed and practiced under appropriate conditions. The purpose of this guideline is to define conditions and principles, which will optimize the provision of accurate molecular information.

In producing MM12, the intention of the CLSI Subcommittee on Molecular Methods for Microarrays was to reach a consensus so an approved guideline can be distributed to laboratories that use molecular diagnostic tests. The subcommittee also intends the document to be broad in perspective and an educational resource for molecular genetics.

Key Words

Amplification, gene, genetic disease, molecular diagnostic test, mutation detection, nucleic acid, Southern blot
Diagnostic Nucleic Acid Microarrays; Approved Guideline

1 Scope

MM12—Diagnostic Nucleic Acid Microarrays addresses array-based detection of variations in DNA sequence and gene expression analysis as it relates to:

- heritable variations;
- somatic changes;
- methylation profiling;
- pathogen profiling including antibiotic resistance analysis;
- expression profiling; and
- gene dosage/comparative genomic hybridization (CGH).

This guideline provides recommendations for many aspects of the microarray process, including: a method overview; nucleic acid extraction; the preparation, handling, and assessment of genetic material; and interpretation and reporting of results. Quality control, as well as analytic and clinical validation, is also addressed.

This guideline is limited to clinically relevant targets and does not address tissue and protein microarrays, non-nucleic acid microarrays, or research applications of microarrays.

2 Introduction

2.1 Diagnostic Microarrays

Diagnostic nucleic acid microarrays are a relatively recent outgrowth of more traditional molecular diagnostic methods, and have the potential to allow rapid, simultaneous genetic testing of individuals for multiple traits (e.g., polymorphisms, haplotypes) or multiple different mutations in a single disease gene. Nucleic acid-based microarrays also have diagnostic potential for identification of infectious disease organisms from a variety of sample matrices. Other configurations of microarrays enable comparative surveys of gene expression in selected tissues and samples, resulting in diagnostic and response predictions. These devices represent multiplexed analysis of clinical specimens and have unique manufacturing and quality control concerns, as well as analytical and clinical validation differences and novel interpretation algorithms when compared to simple unitary tests.

2.2 Diagnostic Utility

The usefulness of microarrays for diagnostic applications can be traced to advances in the identification of disease genes for a number of genetic diseases and susceptibilities, and to the increased knowledge of transcriptional loci provided by the sequencing and analysis of the human genome, as well as development of molecular signatures for identification of disease-causing organisms. It is now possible to rapidly test for specific mutations, polymorphisms, and gene expression patterns that may direct medical management, prophylaxis, and treatment for any number of conditions. These tests may complement or supplant more traditional diagnostic methods, and in some cases, may be the only available approach for diagnosis. The utility of diagnostic microarrays encompasses predicting disease susceptibility, identifying pathological organisms, screening for carriers of recessive traits, performing prenatal diagnosis, making earlier or more reliable diagnosis of cancer, classifying tissues and tumors by molecular signature, and making treatment decisions based on polymorphic markers of response and toxicity.
Related CLSI/NCCLS Publications

C24-A2 Statistical Quality Control for Quantitative Measurements: Principles and Definitions; Approved Guideline—Second Edition (1999). This guideline provides definitions of analytical intervals; plans for quality control procedures; and guidance for quality control applications.

GP29-A Assessment of Laboratory Tests When Proficiency Testing is Not Available; Approved Guideline (2002). This guideline suggests workable alternatives for evaluating the accuracy of an assay when standard interlaboratory comparison programs are unavailable.

MM1-A Molecular Diagnostic Methods for Genetic Diseases; Approved Guideline (2000). This document provides guidance for the use of molecular biologic techniques for clinical detection of heritable mutations associated with genetic disease.

MM2-A2 Immunoglobulin and T-Cell Receptor Gene Rearrangement Assays; Approved Guideline (2002). This document is a guideline for conducting molecular tests of immunoglobulin and T-cell receptor gene arrangements.

MM3-A2 Molecular Diagnostic Methods for Infectious Diseases; Approved Guideline—Second Edition (2006). This guideline addresses topics relating to clinical applications, amplified and nonamplified nucleic acid methods, selection and qualification of nucleic acid sequences, establishment and evaluation of test performance characteristics, inhibitors, and interfering substances, controlling false-positive reactions, reporting and interpretation of results, quality assurance, regulatory issues, and recommendations for manufacturers and clinical laboratories.

MM5-A Nucleic Acid Amplification Assays for Molecular Hematopathology; Approved Guideline (2003). This guideline addresses the performance and application of assays for gene translocations by both PCR and RT-PCR techniques and includes information on specimen collection, sample preparation, test reporting, test validation, and quality assurance.

MM6-A Quantitative Molecular Methods for Infectious Diseases; Approved Guideline (2003). This document provides guidance for the development and use of quantitative molecular methods, such as nucleic acid probes and nucleic acid amplification techniques of the target sequences specific to particular microorganisms. It also presents recommendations for quality assurance, proficiency testing, and interpretation of results.

MM14-A Proficiency Testing (External Quality Assessment) for Molecular Methods; Approved Guideline (2005). This document provides guidelines for a quality proficiency testing program, including reliable databases; design, control in the choice of materials and analytes; good manufacturing processes; documentation procedures; complaint handling; corrective and preventive action plans; and responsive timing of reports.