VET09

Understanding Susceptibility Test Data as a Component of Antimicrobial Stewardship in Veterinary Settings

This report provides veterinarians with the information needed to successfully acquire and interpret antimicrobial susceptibility test results. It promotes common understanding between the veterinarian and the veterinary microbiology laboratory by providing example culture and susceptibility reports and animal species-specific guidance on applying breakpoints to interpret susceptibility test results.

A CLSI report for global application.
Understanding Susceptibility Test Data as a Component of Antimicrobial Stewardship in Veterinary Settings

Virginia R. Fajt, DVM, PhD, DACVCP
Claire R. Burbick, DVM, PhD, DACVM
Sara Lawhon, DVM, DACVCP
Eden Bermingham, DVM, MS, DACVCP
Robert Bowden, BS
Erin Frey, DVM, DACVPM
Ronette Gehring, BVSc, DACVCP
K. Fred Gingrich II, DVM
Merran Govendir, PhD, BVSc, FHERDSA, MANZCVSc
Beth N. Harris, MS, PhD
Cory Langston, DVM, PhD
Sakurako Marchand, MT
Ron A. Miller, MS, PhD
Mark G. Papich, DVM, MS
Pierre Rouppert
Stefan Schwarz, DVM
Michael T. Sweeney, MS
Anil J. Thachil, BVSc, MVSc, PhD, DACVCP
Cory Langston, DVM, PhD
Sakurako Marchand, MT
Ron A. Miller, MS, PhD
Mark G. Papich, DVM, MS
Pierre Rouppert
Stefan Schwarz, DVM
Michael T. Sweeney, MS
Anil J. Thachil, BVSc, MVSc, PhD, DACVCP

Abstract

Clinical and Laboratory Standards Institute report VET09—Understanding Susceptibility Test Data as a Component of Antimicrobial Stewardship in Veterinary Settings discusses antimicrobial susceptibility testing (AST) that provides important, clinically relevant information to the submitting veterinarian if the veterinarian understands how the testing is performed and how the results can be interpreted. This report provides veterinarians background information about laboratory processes, including how AST is performed, reasons for AST not being performed, and how AST results are assessed by the laboratory. It also describes the reasons for varying degrees of confidence in applying breakpoints for interpreting AST results, which will empower veterinarians as they make decisions about the use of antimicrobial agents to treat bacterial disease in animals.

This report gives an overview of some of the factors that affect antimicrobial drug selection in animals, including principles of antimicrobial pharmacology, how bacterial species identification affects AST results interpretation, and the veterinarian's role in ensuring AST results are accurate and useful. By providing example susceptibility test reports with callout boxes, important facets of laboratory reports with AST results are highlighted to aid the veterinarian in maximizing the data.

This report has separate chapters for animal species-specific guidance on how to interpret AST data for dogs, cats, horses, cattle, pigs, and fish, and uniquely, it provides evidence-based appraisals of confidence in the AST data reported by laboratories. This guidance can be also used by laboratories to select appropriate breakpoints for assigning interpretive categories and to aid client veterinarians in interpreting their data.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org.

If you or your organization is not a member and would like to become one, or to request a copy of the catalog, contact us at:

P: +1.610.688.0100 F: +1.610.688.0700 E: customerservice@clsi.org W: www.clsi.org
Copyright ©2019 Clinical and Laboratory Standards Institute. Except as stated below, any reproduction of content from a CLSI copyrighted standard, guideline, derivative product, or other material requires express written consent from CLSI. All rights reserved. Interested parties may send permission requests to permissions@clsi.org.

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedures manual at a single site. To request permission to use this publication in any other manner, e-mail permissions@clsi.org.

Suggested Citation

ISBN

978-1-68440-050-8 (Print)
978-1-68440-051-5 (Electronic)
ISSN 1558-6502 (Print)
ISSN 2162-2914 (Electronic)
Contents

Abstract ... i
Committee Membership ... iii
Foreword ... ix

Chapter 1: Introduction

1.1 Scope ... 2
1.2 Background ... 3
1.3 Terminology ... 4

Chapter 2: Overview of Factors Affecting Antimicrobial Agent Selection in Animals

2.1 General Principles of Pharmacological Relationships in Antimicrobial Therapy 10
2.2 The Importance of the Animal Species In Antimicrobial Susceptibility Testing Data Interpretation .. 20
2.3 Potential Effects of Bacterial Species Similarities and Differences on Interpretation of Antimicrobial Susceptibility Testing Data ... 23
2.4 Important Regulatory and Legal Aspects of Antimicrobial Agent Selection in Animals 27

Chapter 3: Antimicrobial Susceptibility Testing Process Overview

3.1 Process Flow Charts ... 30
3.2 Antimicrobial Agents Selected for Primary Testing and Reporting 33
3.3 Antimicrobial Agents Excluded From Antimicrobial Susceptibility Test Reports 34

Chapter 4: Typical Antimicrobial Susceptibility Test Reports

4.1 Basic Information Documented in Laboratory Antimicrobial Susceptibility Test Reports .. 38
4.2 Example Laboratory Antimicrobial Susceptibility Test Reports ... 42

Chapter 5: Canine-Specific and Other Breakpoints and Factors Affecting Antimicrobial Susceptibility Testing Result Interpretations for Dogs

5.1 Confidence in Applicability of Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Dogs ... 50
5.2 Approved Canine-Specific Breakpoint Dosage Regimens and Tissue Infection Sites 50
5.3 Applying Canine-Specific Breakpoints to Other Bacteria in Dogs 53
5.4 Applying Canine-Specific Breakpoints to Other Infection Sites in Dogs 54
5.5 Applying Canine-Specific Breakpoints to Other Doses, Routes, Frequencies, or Durations of Therapy .. 54
5.6 Applying Human Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Dogs ... 55
Contents (Continued)

Chapter 6: Feline-Specific and Other Breakpoints and Factors Affecting Antimicrobial Susceptibility Testing Result Interpretations for Cats

- 6.1 Confidence in Applicability of Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Cats ... 60
- 6.2 Approved Feline-Specific Breakpoint Dosage Regimens and Tissue Infection Sites .. 61
- 6.3 Applying Feline-Specific Breakpoints to Other Bacteria in Cats ... 62
- 6.4 Applying Feline-Specific Breakpoints to Other Infection Sites in Cats .. 63
- 6.5 Applying Feline-Specific Breakpoints to Other Doses, Routes, Frequencies, or Durations of Therapy 63
- 6.6 Applying Human or Other Species’ Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Cats ... 64

Chapter 7: Equine-Specific and Other Breakpoints and Factors Affecting Antimicrobial Susceptibility Testing Result Interpretations for Horses

- 7.1 Confidence in Applicability of Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Horses ... 70
- 7.2 Approved Equine-Specific Breakpoint Dosage Regimens and Tissue Infection Sites .. 70
- 7.3 Applying Equine-Specific Breakpoints to Other Bacteria in Horses ... 73
- 7.4 Applying Equine-Specific Breakpoints to Other Infection Sites in Horses .. 75
- 7.5 Applying Equine-Specific Breakpoints to Other Doses, Routes, Frequencies, or Durations of Therapy 75
- 7.6 Applying Human Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Horses 75

Chapter 8: Bovine-Specific and Other Breakpoints and Factors Affecting Antimicrobial Susceptibility Testing Result Interpretations for Cattle

- 8.1 Confidence in Applicability of Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Cattle .. 80
- 8.2 Approved Bovine-Specific Breakpoint Dosage Regimens and Tissue Infection Sites .. 80
- 8.3 Applying Bovine-Specific Breakpoints to Other Bacteria in Cattle ... 84
- 8.4 Applying Bovine-Specific Breakpoints to Other Infection Sites in Cattle .. 85
- 8.5 Applying Bovine-Specific Breakpoints to Other Doses, Routes, Frequencies, or Durations of Therapy 85
- 8.6 Applying Human Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Cattle 85
- 8.7 Considerations for Antimicrobial Susceptibility Testing Result Interpretations for Bovine Mastitis Pathogens 86
Contents (Continued)

Chapter 9: Porcine-Specific and Other Breakpoints and Factors Affecting Antimicrobial Susceptibility Testing Result Interpretations for Pigs
89

- 9.1 Confidence in Applicability of Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Pigs ... 90
- 9.2 Approved Porcine-Specific Breakpoint Dosage Regimens and Tissue Infection Sites ... 90
- 9.3 Applying Porcine-Specific Breakpoints to Other Bacteria in Pigs ... 93
- 9.4 Applying Porcine-Specific Breakpoints to Other Infection Sites in Pigs ... 94
- 9.5 Applying Porcine-Specific Breakpoints to Other Doses, Routes, Frequencies, or Durations of Therapy .. 94
- 9.6 Applying Human Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Pigs ... 95

Chapter 10: Fish-Specific Breakpoints, Epidemiological Cutoff Values, and Factors Affecting Antimicrobial Susceptibility Testing Result Interpretations for Fish
97

- 10.1 Confidence in Applicability of Breakpoints for Interpreting Fish Antimicrobial Susceptibility Testing Results 98
- 10.2 Approved Fish-Specific Breakpoint Dosage Regimens and Tissue Infection Sites ... 99
- 10.3 Applying Fish-Specific Breakpoints to Other Bacteria in Fish ... 100
- 10.4 Applying Fish-Specific Breakpoints to Other Infection Sites in Fish ... 100
- 10.5 Applying Fish-Specific Breakpoints to Other Doses, Routes, Frequencies, or Durations of Therapy .. 101
- 10.6 Applying Human or Other Species’ Breakpoints for Interpreting Antimicrobial Susceptibility Testing Results for Fish 101

Chapter 11: Conclusion .. 103

Chapter 12: Supplemental Information .. 105

- References .. 106
- Appendix A. CLSI-Approved Canine-Specific Breakpoints ... 112
- Appendix B. CLSI-Approved Feline-Specific Breakpoints ... 118
- Appendix C. CLSI-Approved Equine-Specific Breakpoints ... 122
- Appendix D. CLSI-Approved Bovine-Specific Breakpoints ... 126
- Appendix E. CLSI-Approved Porcine-Specific Breakpoints ... 130
- The Quality Management System Approach ... 132
- Related CLSI Reference Materials .. 134
Foreword

This report is designed to provide veterinarians and other stakeholders in veterinary diagnostics with key information needed to appropriately interpret antimicrobial susceptibility testing (AST) data for application to clinical decision-making. This report can therefore be read from beginning to end for a comprehensive overview by animal species, bacterial type, and antimicrobial agents in the context of AST. However, each chapter is also designed to provide stand-alone information, so the report can be sampled as needed.

This report includes general guidance on how to apply pharmacological principles to selection and use of antimicrobial agents and how to get the best information from the laboratory, starting with submitting an animal specimen for culture through receiving the laboratory report with AST results. Basic components of a laboratory report and specific examples with AST results are included with commentary on the information reported, as well as different presentations that clinicians may receive from different laboratories. There is also an overview of regulatory and legal considerations for antimicrobial agents. Finally, separate chapters are included that focus on AST results interpretations applied to different animal species: dogs, cats, horses, cattle, pigs, and fish.

Some unique information included in this report is not available anywhere else, including recommendations on extrapolating from:

- One infection site to another
 - For example, whether a breakpoint established for Escherichia coli from skin and soft-tissue infections in dogs can be applied to E. coli isolated from the lungs
- One bacterial species to another
 - For example, whether a breakpoint established for E. coli can be applied to Klebsiella pneumoniae.
- One animal species to another
 - For example, whether it is reasonable to apply canine breakpoints to bacterial isolates from cats

NOTE: The content of this report is supported by the CLSI consensus process and does not necessarily reflect the views of any single individual or organization.

| KEY WORDS |
|-----------------|-----------------|-----------------|
| Antimicrobial stewardship |
| Antimicrobial susceptibility testing |
| Breakpoints |
| Interpretive categories |
| Laboratory Reporting |
| Species-specific breakpoints |
| Veterinary |
Chapter 1

Introduction

This chapter includes:

• Report’s scope and applicable exclusions
• Background information pertinent to the report’s content
• Standard precautions information
• “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions
• Terms and definitions used in the report
• Abbreviations and acronyms used in the report
Understanding Susceptibility Test Data as a Component of Antimicrobial Stewardship in Veterinary Settings

Introduction

1.1 Scope

This report is designed to facilitate common understanding among veterinarians, microbiologists, and laboratorians about how antimicrobial susceptibility testing (AST) is performed, and how the results can be interpreted and applied to clinical decision-making. The intended audience includes veterinarians, microbiologists, laboratorians conducting in vitro testing, veterinary educators, pharmacists, and students.

To provide this information, the report includes an overview of pharmacological principles relevant to antimicrobial agent selection, some general principles about differences among animal species that may affect antimicrobial agent use and efficacy, and how bacterial species affects AST results and interpretations. This information also helps to explain how microbiological and pharmacological data are used to develop breakpoints. Example AST reports are included, in which common questions are answered and misconceptions are clarified. A large portion of this report provides animal species–specific guidance on applying AST results; reasonable extrapolations that can be made across bacterial species, infection sites, or antimicrobial agents; and the expected degree of confidence in these extrapolations. Also included are excerpts from other CLSI documents relevant to interpreting AST reports.

Based on available expertise and perceived need, this report covers the following animal species: dogs, cats, horses, cattle, pigs, and fish. These animal species represent all the veterinary breakpoints that have been approved to date by the CLSI Subcommittee on Veterinary Antimicrobial Susceptibility Testing (VAST), with the exception of poultry breakpoints for one antimicrobial agent. Interpreting AST results for chicken and turkey pathogens is not discussed in this report, although these animal species are a significant focus for antimicrobial stewardship efforts worldwide.

NOTE:

Interpreting AST results for chicken and turkey pathogens is not discussed in this report, although these animal species are a significant focus for antimicrobial stewardship efforts worldwide.
Overview of Factors Affecting Antimicrobial Agent Selection in Animals

Selecting an antimicrobial agent involves a complex set of decisions including establishing a presumptive or definitive diagnosis of a bacterial infection, predicting whether an antimicrobial agent is likely to result in a change in clinical outcome in the animal(s), selecting a specific drug (or drug combination) and formulation, and selecting a dosage regimen (ie, dose, route, frequency, and duration). This report focuses on how AST can inform drug selection. This chapter provides background information that helps explain the rationale for performing AST and how to interpret the results.

AST is the intersection of how much antimicrobial agent is available at infection sites in an animal and how much antimicrobial agent is needed to inhibit growth of bacterial pathogens.

The central tenet of clinical pharmacology, that drugs must be at the site of action at effective concentrations, is no less true with antimicrobial agents than it is with other drugs.

2.1 General Principles of Pharmacological Relationships in Antimicrobial Therapy

The central tenet of clinical pharmacology, that drugs must be at the site of action at effective concentrations, is no less true with antimicrobial agents than it is with other drugs. Understanding the role of drug concentrations on antimicrobial agent effectiveness is critical to interpreting and applying AST information.

2.1.1 Where Does the Antimicrobial Agent Go After Dosing?

Drugs can be administered by various routes, but for a drug to get to the infection site, it must either be administered directly at the site, or it must eventually reach the central circulation from which it will be delivered throughout the body by the bloodstream. Drug molecules move from the bloodstream to infection sites based on forces such as concentration gradients and active transport mechanisms (see Figure 1).
interpretation, because it can be difficult to determine if the bacteria have taken advantage of a breached barrier or weakened host immune status to cause bacterial infection, or if the bacteria are present because of incorrect sampling or sampling of sites with normal bacterial flora like mucous membranes, skin, or the gastrointestinal tract. Lastly, growing two or more microbes from a clinical specimen does not confirm that a polymicrobial infection is the cause of the disease. It may represent a single pathogen in a mix of contaminants or a true mixed infection. Additionally, antibiotic use may alter the population of isolated bacteria. This scenario could result in recovery of only the resistant subset of a polymicrobial infection or isolation of contaminants, with the dominant or true infectious agents responding to antimicrobial therapy.

NOTE:
Growing two or more microbes from a clinical specimen does not confirm that a polymicrobial infection is the cause of the disease.

2.3.2 Differences Among Gram-Negative Bacteria
Antimicrobial susceptibility varies widely among gram-negative bacteria. Three main groups of gram-negative bacteria commonly isolated from animals include *Pasteurellaceae, Enterobacteriaceae*, and gram-negative nonfermenters (eg, *Pseudomonas aeruginosa*). Each group is unique in its

Receipt of a fresh, appropriately collected clinical specimen in suitable transport medium is essential to the laboratory’s capacity to recover and identify significant pathogens. To assess the significance of bacteria in a given clinical specimen, laboratorians should review multiple aspects of the case including:

- Animal description (eg, breed, sex, age, neuter status)
- Clinical signs or other diagnostic abnormalities
- History of antimicrobial agent use
- Sampling infection site/location of the lesion
- Type of bacteria
- Virulence factors and toxins, if any
- Possible presence of other disease or agents including anaerobic bacteria or fungal or viral agents