Beyond Susceptible/Intermediate/Resistant (SIR): Enhancing Laboratory Communication with Reporting Comments

Presenters:

April Abbott, PhD, D(ABMM) – AST Subcommittee
Claire Burbick, DVM, PhD, DACVM– VAST Subcommittee
Tanis Dingle, PhD, FCCM, D(ABMM) – Antifungal Subcommittee

Objectives

- Discuss gaps between breakpoints and clinical practice
- Convey options for real-time reporting of susceptibility based comments
- Discuss mechanisms for communicating susceptibility information beyond S/I/R
- Discuss impact of susceptibility comments to clinical practice

Beyond Susceptible/Intermediate/Resistant (SIR): Enhancing Laboratory Communication with Reporting Comments

AST SC Perspective

April Abbott, Ph.D., D(ABMM)

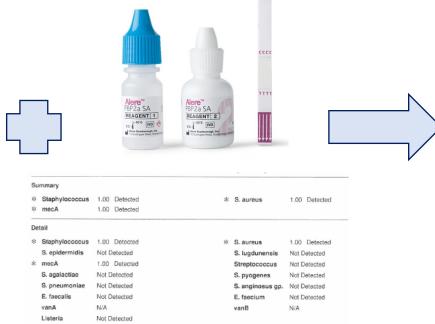
January 2020 Educational Workshop

Disclosures

• Avails Medical, Accelerate Diagnostics, Beckman Coulter, Cepheid

How Susceptibility Comments Are Used

- Convey susceptibility information in the organism name
- Get information into the electronic health record (EHR) that cannot be communicated in the susceptibility table
- Communicate susceptibility information when no antimicrobial susceptibility test (AST) will be performed
- Infection prevention and control (IPC) purposes


Identification of a Mechanism

- Mechanistic testing can occur before, concurrent with, or after routine AST
- Genetic or phenotypic
- Reporting of a mechanism without further interpretation is inappropriate as providers often do not know the correlation between mechanism and antimicrobial resistance

What's in a Name?

Problem gets worse when you add in molecular resistance; do you need to comment on methodology?

- S. aureus, oxacillin resistant
- S. aureus, in susceptibility table input oxacillin R
- S. aureus, methicillin resistant

MRSA, methicillin-resistant S. aureus

S. aureus, mecA positive???

Report Methicillin (Oxacillin) Resistance

	egies for R	<u>~ r</u>	Test	Oxacillin Resistance Using Oxacillin Salt Agar	mecA-Mediated Oxacillin Resistance Using Cefoxitin					
			Test method	Agar Dilution		Disk Diffusion	Broth Microdilu	ution		
idication ecting	Target(s)		Organism group	S. aureus	S. aureus and S. lugdunensis	Other Staphylococcus spp. (excluding S. pseudintermedius and S. schleiferi)				
hicillin		а	Medium	MHA with 4% NaCl	MHA	, c. comencin	САМНВ			
stance in ureus		C	Antimicrobial concentration	6 μg/mL oxacillin	30 μg cefoxitin disk		4 μg/mL cefoxitin			
						agglutination and AST, and consider <i>mecA</i> colony NAAT if available	suggested testing, report as methicillin R			
	2C. Staphy	oc	occus spp. (C	ontinued)						
stra oxa (5) Mo	nins of <i>S. au</i> ncillin (modifie st oxacillin re	ed S	s that express <i>m</i> s. <i>aureus</i> strains	necA, mecC, or another mecha). ed by <i>mecA</i> , encoding PBP2a	anism of methicillin re	sistance, such as changes in a	re" or "oxacillin resistance." MRSA affinity of penicillin-binding proteins ecA or PBP2a should be reported result per institutional protocol.	for		

Organism Name MRSA Decision Tree

- Speaking a common language
- Informatics challenge
- Solution that worked for both the providers and IPC

Identification of a Mechanism

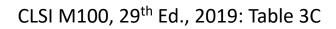
Mechanism Detected	What is Reported
mecA	Methicillin-resistant Staphylococcus aureus detected by a molecular method.
vanA/vanB	Vancomycin-resistant Enterococcus detected by a molecular method.
CTX-M	Extended-spectrum beta-lactam detected by a molecular method.
KPC (or NDM, IMP, VIM, OXA)	Carbapenem-resistant organism detected. Presence of a KPC carbapenemase detected by a molecular method.

 CLSI guidance: report phenotypic results (if available) and consider reporting the presence of molecular target per institutional protocol

MIC.66100 Final Report Phase I

The final report includes a summary of the test method and information regarding clinical interpretation if appropriate.

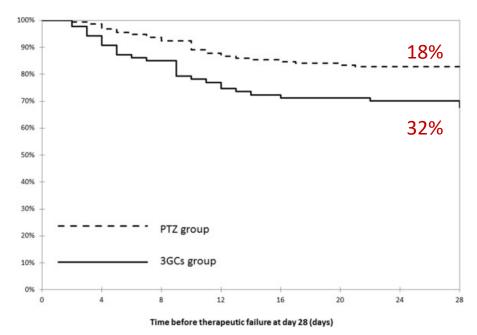
NOTE: For example, HIV-1 viral load results may vary significantly depending upon the test method used; including the test method in the report is important information for interpreting the results.



Carbapenemase Detection

 Carbapenemase production has been associated with poorer clinical outcomes, including increased mortality over noncarbapenemase carbapenem-resistant Enterobacterales Comment used to convey information for treatment and infection prevention and control purposes

Table 3C. (Continued)


A B C D

"SPICE" Organisms

- Infer potential emergence of resistance based on the identification of the organism alone, without any AST
- Studies have reproducibly demonstrated emergence of resistance and therapeutic failure when third generation cephalosporins (and to some extent piperacillin/tazobactam) are used – but this is very nuanced and hotly debated

- Overall treatment failure rate of 23%
- Emergence of resistance and failure rate was higher in those receiving a third generation cephalosporin

Carrie C et al., J Crit Care. 2019 (56) 6-11

"SPICE" Organisms

(12) Enterobacter, Klebsiella (formerly Enterobacter) aerogenes, Citrobacter, and Serratia may develop resistance during prolonged therapy with 3rd-generation cephalosporins as a result of derepression of AmpC β-lactamase. Therefore, isolates that are initially susceptible may become resistant within 3 to 4 days after initiation of therapy. Testing repeat isolates may be warranted.

• 60 year old male, status post neurosurgery, presents with infected bone flap

Culture Result

MODERATE SERRATIA MARCESCENS

SERRATIA MARCESCENS MAY DEVELOP RESISTANCE UPON EXPOSURE TO THIRD GENERATION CEPHALOSPORINS OR PIPERACILLIN/TAZOBACTAM. FOR SERIOUS INFECTIONS, CEFEPIME, CARBAPENEM, OR NON-BETA-LACTAM AGENT SHOULD BE CONSIDERED.

Susceptibility

		Serra	tia marcescens MIC
	Ampicillin	>16 RESISTANT	Resistant
	Ampicillin/sulbactam	>16/8 RESIS	Resistant
	Cefazolin	>16	Resistant ¹
	Cefepime	<=2 SUSCEPT	Sensitive
N	Ceftazidime	<=1 SUSCEPT	Sensitive
$\square >$	Ceftriaxone	<=1 SUSCEPT	Sensitive
V	Cefuroxime	>16 RESISTANT	Resistant
	Ciprofloxacin	<=1 SUSCEPT	Sensitive
	Ertapenem	<=0.5 SUSCE	Sensitive
	Gentamicin	<=1 SUSCEPT	Sensitive
	Levofloxacin	<=0.25 SUSC	Sensitive
\Box	Piperacill/Tazob	<=4 SUSCEPT	Sensitive
	TMP SULFA	<=2/38 SUSC	Sensitive

- Antimicrobial stewardship function
- Comment automatically appended when organism is reported

CLSI M100, 29th Ed., 2019: Table 2A

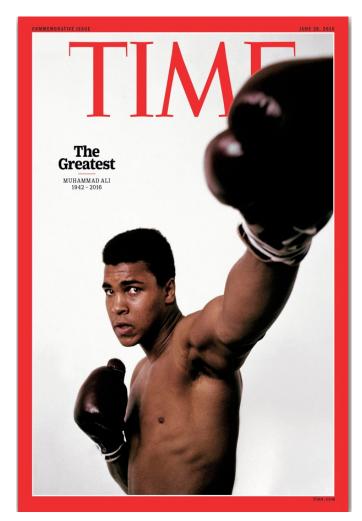
Dosing Guidance

Numerous comments in M100 concerning dosing regimen

Table 2A. Enterobacteriaceae (Continued)

Test/Report	Antimicrobial	Disk	Zone	Interpretive Categories and Zone Diameter Breakpoints, nearest whole mm Interpretive Categories and MIC Breakpoints, ug/mL							
Group	Antimicrobial	Content	s	SDD	WITOTE IIIII	R	s	SDD	J/mL	R	Comments
	ARENTERAL) (Including		_		Please r		•))		Comments
В	Cefepime	30 μg	≥25	19 <u>–</u> 24	_	≤18	≤2	4–8	_	≥16	(16) The breakpoint for susceptible is based on a dosage regimen of 1 g administered every 12 h. The breakpoint for SDD is based on dosage regimens that result in higher cefepime exposure, either higher doses or more frequent doses or both, up to approved maximum dosage regimens. See Appendix E for more information about breakpoints and dosage regimens. Also see the definition of SDD in the Instructions for Use of Tables section.
B B	Cefotaxime or ceftriaxone	30 µg 30 µg	≥26 ≥23	-	23–25 20–22	≤22 ≤19	≤1 ≤1	-	2 2	≥4 ≥4	(17) Breakpoints are based on a dosage regimen of 1 g administered every 24 h for ceftriaxone and 1 g administered every 8 h for cefotaxime. See comment (11).

Determining which dosing comments to include is a challenge



Dispense Dosing Recommendations

- Microbiologists, pharmacists, and ID specialists must partner to determine relevant comments
- Review comments yearly
- Cascade report to limit the number of therapeutic options (and as a result the number of comments)
- Limit the number of orderable regimes in the EHR for a given antimicrobial

Different Doses for Different Organisms/Sites

- Provide guidance when the standard dosing strategy may need to be modified
- Choosing the "best" dose can be a challenge for the provider

Table 2C. Staphylococcus spp. (Continued)

Test/Report	Antimicrobial	Staphylococcus	Disk		Interpretive Categories and Zone Diameter Breakpoints, nearest whole mm Interpretive Categories and MIC Breakpoints, μg/mL							
Group	Agent	spp. Indications	Content	s	SDD	ı	R	s	SDD	ı	R	Comments
CEPHEMS (PARENTERAL)											
В	Ceftaroline	S. aureus only, including MRSA	30 µg	≥25	20–24		≤19	≤1	2–4	-	≥8	(18) The breakpoint for susceptible is based on a dosage regimen of 600 mg administered every 12 h.
												(19) The breakpoint for SDD is based on a dosage in adults of 600 mg every 8 h administered over 2 h.

Table 2H-1. Streptococcus spp. beta-hemolytic group

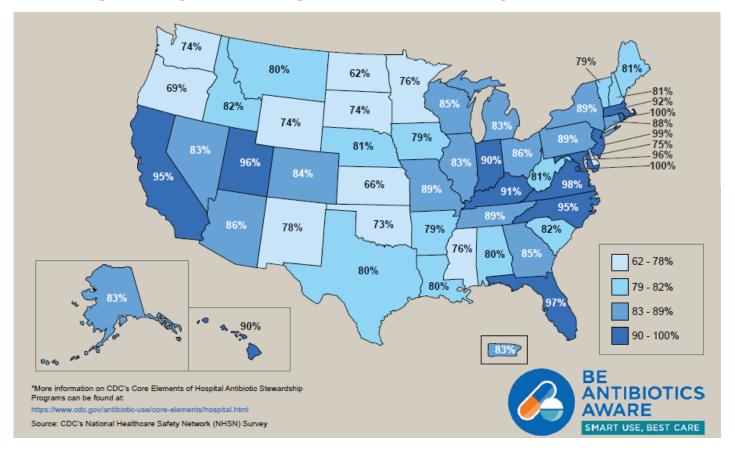
					,		
С	Ceftaroline	30 μg	≥26 –	-	≤0.5		(7) Breakpoints are based on a dosage regimen
					į	į	of 600 mg administered every 12 h.

Source-specific Dosing Guidance

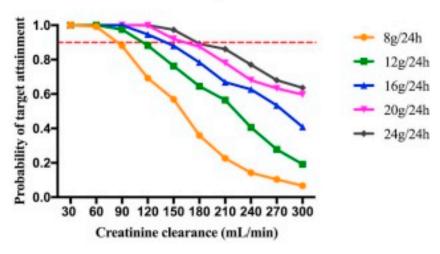
• Important for privileged sites where drug levels may be lower than systemic levels (e.g. CSF for meningitis) and in compartments where concentrations of the agent may be higher than systemic levels (e.g. urine for uncomplicated urinary tract infection)

Culture Result >=100,00	O COL/ML ESCHERICHIA COLI
tatus 01/14/20	20 FINAL
DI Organism ESCHERIC	HIA COLI
Susceptibility	
	Escherichia coli
	MIC
Ampicillin	<=8 SUSCEPT Sensitive
Ampicillin/sulbactam	2/1 SUSCEPT Sensitive
Cefazolin	<=2 ¹
Cefepime	<=2 SUSCEPT Sensitive
Ceftazidime	<=1 SUSCEPT Sensitive
Ceftriaxone	<=1 SUSCEPT Sensitive
Cefuroxime	<=4 SUSCEPT Sensitive
Ciprofloxacin	<=1 SUSCEPT Sensitive
Ertapenem	<=0.5 SUSCE Sensitive
Gentamicin	<=1 SUSCEPT Sensitive
Levofloxacin	<=0.25 SUSC Sensitive
Nitrofurantoin	<=32 SUSCEP Sensitive
Piperacill/Tazob	
	<=4 SUSCEPT Sensitive

1 SEE NOTE:


FOR UNCOMPLICATED URINARY TRACT INFECTIONS, A MIC <=16 FOR CEFAZOLIN INDICATES SUSCEPTIBILITY TO CEFACLOR, CEFDINIR, CEFPODOXIME, CEFPROZIL, CEFUROXIME, CEPHALEXIN, AND LORACARBEF. FOR COMPLICATED URINARY TRACT INFECTIONS, A MIC OF <=2 INDICATES SUSCEPTIBILITY TO CEFAZOLIN, BUT MAY NOT BE PREDICTIVE OF ORAL CEPHALOSPORIN SUSCEPTIBILITY.

* Alternative reporting strategy is to create two antimicrobials, cefazolin and oral cephs, as an example



Expertise and Resources

Percentage of Hospitals Meeting All 7 Core Elements by State, 2018

B. Probability of target attainment with varying renal clearance MIC = 4 mg/L

- In 2018, 85% of acute care hospitals met all seven of the Core Elements
- Evaluating literature and implementing new practice requires resources

Communicate Predictable Susceptibility or Resistance Based on Identification

CLSI: "Susceptibility testing of penicillins... does not need to be performed routinely, because non-susceptible isolates are extremely rare in any beta-hemolytic streptococcus..."

- Most laboratories utilize a version of this comment
- Weekly requests for full AST
 - Technologists first evaluate EHR for penicillin allergy status
 - Work with the provider to determine reason for request

Communicate Intrinsic Resistance

- Agent may not be routinely released as part of routine AST
- Ability to provide clinically important information prior to AST
- Driven by a provider question

- Scenario: provider contacts the laboratory to request vancomycin susceptibility on *Pediococcus*
 - "Pediococcus species are intrinsically resistant to vancomycin. Isolates are generally susceptible to ampicillin and penicillin. Contact Microbiology if susceptibility testing is warranted."

Provide Surrogate Data

Agent not routinely released on AST panel

- Scenario: provider contacts the laboratory to request piperacillin/tazobactam on Enterococcus faecalis
 - "Susceptibility of *Enterococcus faecalis* to piperacillin/tazobactam can be inferred from susceptibility to ampicillin."

Comments

- (6) The results of ampicillin susceptibility tests should be used to predict the activity of amoxicillin. Ampicillin results may be used to predict susceptibility to amoxicillin-clavulanate, ampicillin-sulbactam, and piperacillin-tazobactam among non-β-lactamaseproducing enterococci. Ampicillin susceptibility can be used to predict imipenem susceptibility, providing the species is confirmed to be E. faecalis.
- (7) Enterococci susceptible to penicillin are predictably susceptible to ampicillin, amoxicillin, ampicillinsulbactam, amoxicillin-clavulanate, and piperacillintazobactam for non–β-lactamase-producing enterococci. However, enterococci susceptible to ampicillin cannot be assumed to be susceptible to penicillin. If penicillin results are needed, testing of penicillin is required.

Reference Alternative AST Source

- Due to inability to perform AST in-house
- May be used when clinical significance is questionable
- Sources: CLSI standard, antibiogram, literature

"Anaerobe isolate held in lab for 7 days. Anaerobic antibiograms available on Dweb in the Antimicrobial Stewardship page. Contact Microbiology if susceptibility testing required."

Influence of Comments on Prescribing

 Clinical survey of vignettes to assess prescribing choices based on comments added to culture results

Microbiology report in question 3A	Microbiology report in question 3B			
Gram stain: no polymorphs; 2+ epithelial cells;	Gram stain: no polymorphs; 2+ epithelial cells;			
1+ Gram-positive cocci; 1+ Gram-negative bacilli. <u>Culture</u> : mixed skin flora including <i>Pseudomonas</i> spp.	1+ Gram-positive cocci; 1+ Gram-negative bacilli. <u>Culture:</u> skin flora including heavy growth (3+) of Pseudomonas aeruginosa.			
Comment: Pseudomonas are frequent colonizers of skin ulcers, therefore antimicrobial therapy is not always indicated. Susceptibilities may be provided	Reported susceptibilities: Ciprofloxacin S			
on request.	Gentamicin S			
	Piperacillin + Tazobactam S			
	Ceftazidime S			
	S=Susceptible			

Influence of Comments on Prescribing

- Scenario 1: Uncomplicated sore throat
- Scenario 2: Asymptomatic bacteriuria
- Scenario 3: Chronic wound
- Scenario 4(1): Colonization with MDR organism
- Scenario 4(2): intravenous drug user with bacteremia

Table 1. Survey results with *P* values indicating significance of difference between answers in versions A and B of each scenario.

Scenario no.	No. of completed answers returned	Percentage of doctors selecting to use antibiotic in answer	<i>P</i> value
1A	32	3%	< 0.001
1B	38	42%	
2A	38	47%	0.0035
2B	32	81%	
3A	32	12%	< 0.001
3B	38	71%	
4A(1)	13	53%	0.695
4B(1)	13	46%	
4A(2)	24	67%	0.618
4B(2)	19	74%	

Reporting of AST Results – One Size Doesn't Fit All

- Variation in testing methods/practices
- Differences in laboratory information (LIS) and electronic health record (EHR) systems – often, these are electronic hurdles
- Differences in expertise
 - Antimicrobial stewardship programs, pharmacists, specialists can't touch every patient
- Variation in prescribing (e.g. dose/duration)
- Differences in infection prevention and control practices
- The Microbiology Laboratory is the first line of defense in getting clinically relevant AST information in the medical record

What Guidance is Available?

Few publications endorsing exact language/recommendations

TABLE 5 Examples of acceptable therapy-related comments added to patient clinical microbiology reports to improve prescribing of antimicrobials

Category	Examples
CLSI-recommended comments (M100-S25) ^a	Cefazolin results predict results for oral agents cefaclor, cefdinir, cefpodoxime, cefprozil, cefuroxime, cephalexin, and loracarbef when used for therapy of uncomplicated urinary tract infections due to <i>Escherichia coli</i> , <i>Klebsiella pneumoniae</i> , and <i>Proteus mirabilis</i> Rifampin should not be used alone for antimicrobial therapy in infections with <i>Staphylococcus</i> or <i>Streptococcus</i> spp.
	Use of penicillins or third-generation cephalosporins for pneumococcal meningitis requires therapy with maximum doses
	Dose of intravenous penicillin of at least 2 million units every 4 h in adult with normal renal function (12 million U/day) can be used to treat nonmeningeal pneumococcal infections due to strains with penicillin MICs of $\leq 2 \mu g/ml$; strains with an intermediate MIC of 4 $\mu g/ml$ may require penicillin doses of 18 to 24 million U/day in adults with normal renal function
	Penicillin- or ampicillin-intermediate isolates may require combined therapy with an aminoglycoside for bactericidal action in streptococcal infections
	Combination therapy with ampicillin, penicillin, or vancomycin (for susceptible strains) plus an aminoglycoside is usually indicated for serious enterococcal infections such as endocarditis unless high-level resistance to both gentamicin and streptomycin is documented; such combinations are predicted to result in synergistic killing of the <i>Enterococcus</i>

Published Guidance on Interpretive Comments

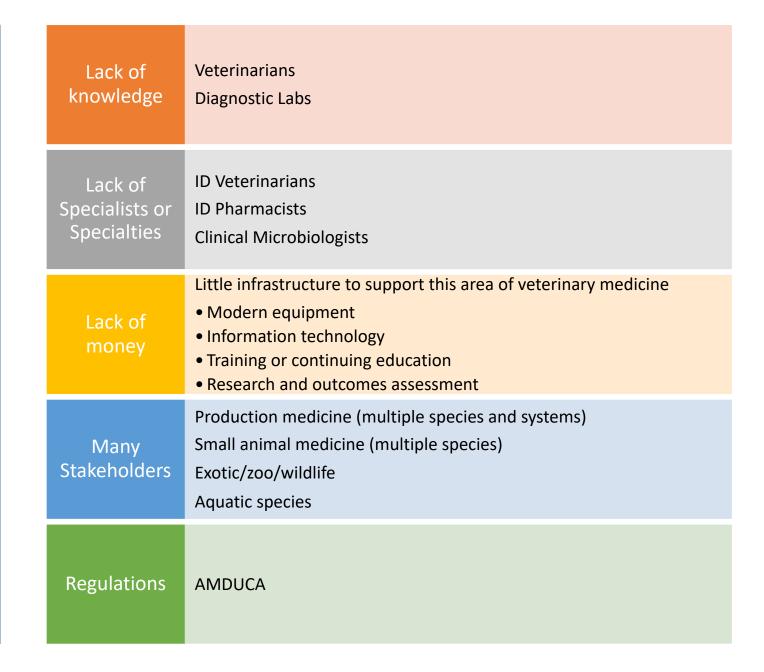
Table 9.3: Examples of comments that interpret antimicrobial susceptibility results

Specimen type and indication	Reporting comment	
Pus or skin swab with methicillin-susceptible Staphylococcus aureus	S. aureus susceptible to flucloxacillin/dicloxacillin is also susceptible to cefazolin, cefalexin and amoxicillin—clavulanate. (Flucloxacillin/dicloxacillin result reported as susceptible based on cefoxitin test.)	Surroga
Any site where Pasteurella species is isolated	Pasteurella species are always resistant to dicloxacillin/flucloxacillin.	Intrinsi Resistan
Respiratory tract or blood isolate (meningitis absent) where <i>Streptococcus pneumoniae</i> is isolated	In pneumonia, benzylpenicillin 1.2 g IV every 6 hours is enough treatment for isolates with MIC \leq 0.5 mg/L. Use 1.2 g every 4 hours for isolates with MIC \leq 1 mg/L. Use 2.4 g every 4 hours for isolates with MIC \leq 2 mg/L. Alternative therapy should be selected for isolates with MIC \geq 4 mg/L – please discuss with the on-call clinical microbiologist. (Comment derived from EUCAST.)	Dosing

AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE

Antimicrobial Stewardship in Australian Health Care, 2018. Chapter 9: Role of the clinical microbiology service

Summary


- Comments are necessary to communicate AST information to providers
- No one-size fits all approach
- Few resources directed at exact recommended language
- Lacking peer-reviewed literature of outcome data
- Challenges:
 - Differences between AST systems, electronic systems (LIS, EHR), expertise and oversight, resources, and clinical practice

Reporting From the Rabbit Hole

Claire Burbick, DVM, PhD, DACVM
Washington State University

Systemic
Challenges to
Effective
Communication

Specific Challenges

Case 1: Merlot

- Signalment: 18 year old Fe spayed, DSH
- History:
 - Chronic kidney disease
 - Treatment-refractory anemia (darbepoetin)
- Recent findings:
 - Thickened gall bladder wall and bile sludge (US)
 - Pulmonary mass (rads)
- Submitted
 - Bile
 - Urine

Case 1: *E.coli* isolated from bile and urine

Bile AST

Isolate	Antimicrobial Drug	MIC	Interpretation
Escherichia coli	Amikacin	<= 4	Susceptible
Escherichia coli	Amoxicillin/Clavulanic Acid	4	Resistant
Escherichia coli	Ampicillin	2	Resistant
Escherichia coli	Cefazolin	2	Susceptible
Escherichia coli	Cefpodoxime	<= 1	Susceptible
Escherichia coli	Cephalexin	8	Resistant
Escherichia coli	Enrofloxacin	$\leq = 0.12$	Susceptible
Escherichia coli	Gentamicin	0.50	Susceptible
Escherichia coli	Marbofloxacin	$\leq = 0.12$	Susceptible
Escherichia coli	Orbifloxacin	<= 1	Susceptible
Escherichia coli	Pradofloxacin	<= 0.25	Susceptible
Escherichia coli	Trimethoprim/Sulfamethoxazole	<= 0.50	Susceptible

NUMBER VALUES = Micrograms/ml; Antimicrobial susceptibility results in veterinary medicine may include antimicrobials that are not approved for use in the host species. Please consider that the standards from the Clinical Laboratory Standards Institute (CLSI) may not exist for use of some antimicrobials in some species, and in vitro results may not predict in vivo efficacy. The client assumes responsibility for efficacy, safety, and residue avoidance with extra label uses of antimicrobials.

Down the rabbit hole....

Isolate	Antimicrobial Drug	MIC	Interpretation	
Escherichia coli	Amikacin	<=4	Susceptible	Cat has also sinter
Escherichia coli	Amoxicillin/Clavulanic Acid	4	Resistant	Cat breakpoints:
Escherichia coli	Ampicillin	2	Resistant	S≤ 0.25 – but should always be
Escherichia coli	Cefazolin	2	Susceptible	reported as R which clinicians think
Escherichia coli	Cefpodoxime	<= 1	Susceptible	means the E. coli is resistant –
Escherichia coli	Cephalexin	8	Resistant	extreme frowny face
Escherichia coli	Enrofloxacin	<= 0.12	Susceptible	extreme nowny face
Escherichia coli	Gentamicin	0.50	Susceptible	Ca waally it sat fly aware in alama
Escherichia coli	Marbofloxacin	<= 0.12	Susceptible	So really just fluoroquinolone
Escherichia coli	Orbifloxacin	<= 1	Susceptible	breakpoints
Escherichia coli	Pradofloxacin	<= 0.25	Susceptible	
Escherichia coli	Trimethoprim/Sulfamethoxazole	$\leq = 0.50$	Susceptible	

Where are the other interpretations coming from?

Is this ok?

Isolate	Antimicrobial Drug	MIC	Interpretation
Escherichia coli	Amikacin	<= 4	Susceptible
Escherichia coli	Amoxicillin/Clavulanic Acid	4	Resistant
Escherichia coli	Ampicillin	2	Resistant
Escherichia coli	Cefazolin	2	Susceptible
Escherichia coli	Cefpodoxime	<= 1	Susceptible • Dog
Escherichia coli	Cephalexin	8	Resistant
Escherichia coli	Enrofloxacin	<=0.12	Susceptible
Escherichia coli	Gentamicin	0.50	Susceptible -
Escherichia coli	Marbofloxacin	<=0.12	Susceptible
Escherichia coli	Orbifloxacin	<= 1	Susceptible
Escherichia coli	Pradofloxacin	<= 0.25	Susceptible
Escherichia coli	Trimethoprim/Sulfamethoxazole	<= 0.50	Susceptible

Amikacin Cefazolin: Cefpodoxime

Cat: Nada Cat: Nada Cat: Nada

Dog: S <=4 Dog: S <=2 Dog: S <=2

Human: $S \le 16$ Human: $S \le 2$ Human: $S \le 2$

Can we report the nuance?

Isolate: E.coli
Site: Bile

Feline-specific Interpretations

B-Lactam and combination agents:

Antimicrobial Agent	MIC	Interpretation
Amoxicillin/Clavulanic Acid	4	Resistant
Ampicillin	2	Resistant

WARNING: Due to poor pharmacokinetics, the drugs reported above are unsuitable for use in treating *Enterobacterales* infection in any body site in cats. For acquired resistance monitoring, this isolate would be considered wild-type with no phenotypic resistance detected.

Fluoroguinolones:

Enrofloxacin	<=0.12	Susceptible
Marbofloxacin	<=0.12	Susceptible
Orbifloxacin	<=1	Susceptible
Pradofloxacin	<=0.25	Susceptible

Canine-specific Interpretations

WARNING: Canine-specific breakpoints may be less accurate for predicting clinical efficacy in cats. Please review with caution.

Aminoglycosides:

Antimicrobial Agent	MIC	Interpretation
Amikacin	<=4	Susceptible

B-Lactam agents:

turi diceres.				
Cefazolin	2	Susceptible		
Cefpodoxime	<=1	Susceptible		
Cephalexin	8	Resistant		

WARNING: The resistance reported for cephalexin is due to poor pharmacokinetics in dogs and is unsuitable for use in treating *Enterobacterales* infection outside of the urinary tract. For acquired resistance monitoring, this isolate would be considered wild-type with no phenotypic resistance detected.

Human-specific Interpretations

WARNING: Human-specific breakpoints may be less accurate for predicting clinical efficacy in cats. Please review with caution.

Aminoglycosides:

Antimicrobial Agent	MIC	Interpretation
Gentamicin	0.5	Susceptible

Folate pathway antagonists:

Trimethoprim/Sulfamethoxazole	<=0.5	Susceptible		

Plus definitions....

Definitions:

<u>Susceptible</u>: a category defined by a breakpoint that implies that isolates with an MIC at or below or zone diameters at or above the susceptible breakpoint are inhibited by the usually achievable concentrations of antimicrobial agent when the dosage recommended to treat the site of infection is used, resulting in likely clinical efficacy.

Intermediate: a category defined by a breakpoint that includes isolates with MICs or zone diameters within the intermediate range that approach usually attainable blood and tissue levels and for which response rates may be lower than for susceptible isolates; NOTE: The intermediate category implies clinical efficacy in body sites where the drugs are physiologically concentrated or when a higher-than-normal dosage of a drug can be used. This category also includes a buffer zone, which should prevent small, uncontrolled, technical factors from causing major discrepancies in interpretations, especially for drugs with narrow pharmacotoxicity margins.

<u>Resistant:</u> a category defined by a breakpoint that implies that isolates with an MIC at or above or zone diameters at or below the resistant breakpoint are not inhibited by the usually achievable concentrations of the agent with normal dosage schedules and/or that demonstrate MICs or zone diameters that fall in the range in which specific microbial resistance mechanisms are likely, and clinical efficacy of the agent against the isolate has not been reliably shown in treatment studies.

Or this?

Isolate: *E.coli*Site: Bile

Aminoglycosides:

Antimicrobial Agent	MIC	Interpretation	Species Interpretation
Amikacin	<=4	Susceptible	Canine
Gentamicin	0.5	Susceptible	Human

B-Lactam and combination agents:

Antimicrobial Agent	MIC	Interpretation	Species Interpretation
Amoxicillin/Clavulanic Acid	4	Resistant	Feline
Ampicillin	2	Resistant	Feline
Cefazolin	2	Susceptible	Canine
Cefpodoxime	<=1	Susceptible	Canine
Cephalexin	8	Resistant	Canine

WARNING: Due to poor pharmacokinetics, the drugs reported above as resistant are unsuitable for use in treating *Enterobacterales* infection in any body site. For acquired resistance monitoring, this isolate would be considered wild-type with no phenotypic resistance detected.

Fluoroquinolones:


Enrofloxacin	<=0.12	Susceptible	Feline
Marbofloxacin	<=0.12	Susceptible	Feline
Orbifloxacin	<=1	Susceptible	Feline
Pradofloxacin	<=0.25	Susceptible	Feline

Folate pathway antagonists:

Trimethoprim/Sulfamethoxazole	<=0.5	Susceptible	Human

PLEASE NOTE: Unfortunately, we lack feline-specific clinical interpretations for some of antimicrobial agents reported. Canine-specific or human-specific breakpoints were used instead, which may aid in clinical decision-making. However, these interpretations may be less accurate for predicting clinical efficacy in cats. Please review with caution.

Or this?

Isolate: E.coli

Site: Bile

Aminoglycosides:

Antimicrobial Agent	MIC	Interpretation	Species Interpretation
Amikacin	<=4	No interpretation	None
Gentamicin	0.5	No interpretation	None

B-Lactam and combination agents:

Antimicrobial Agent	MIC	Interpretation	Species Interpretation
Amoxicillin/Clavulanic Acid	4	Resistant	Feline
Ampicillin	2	Resistant	Feline
Cefazolin	2	No interpretation	None
Cefpodoxime	<=1	No interpretation	None
Cephalexin	8	No interpretation	None

WARNING: Due to poor pharmacokinetics, the drugs reported above as resistant are unsuitable for use in treating *Enterobacterales* infection in any body site. For acquired resistance monitoring, this isolate would be considered wild-type with no phenotypic resistance detected.

Fluoroquinolones:

Enrofloxacin	<=0.12	Susceptible	Feline
Marbofloxacin	<=0.12	Susceptible	Feline
Orbifloxacin	<=1	Susceptible	Feline
Pradofloxacin	<=0.25	Susceptible	Feline

Folate pathway antagonists:

Trimethoprim/Sulfamethoxazole	<=0.5	No interpretation	None		

PLEASE NOTE: Unfortunately, we lack feline-specific clinical interpretations for some of antimicrobial agents reported. The MIC reported is an in vitro measure which may aid in clinical decision-making in conjunction with pharmacologic and efficacy information. Please review with caution.

Last one...promise

Isolate: *E.coli*Site: Bile

Aminoglycosides:

Antimicrobial Agent	MIC	Interpretation	Species Interpretation
Amikacin	<=4	Wild-type	None-ECOFF
Gentamicin	0.5	Wild-type	None-ECOFF

B-Lactam and combination agents:

Antimicrobial Agent	MIC	Interpretation	Species Interpretation
Amoxicillin/Clavulanic Acid	4	Resistant	Feline
Ampicillin	2	Resistant	Feline
Cefazolin	2	Wild-type	None-ECOFF
Cefpodoxime	<=1	Wild-type	None-ECOFF
Cephalexin	8	Wild-type	None-ECOFF

WARNING: Due to poor pharmacokinetics, the drugs reported above as resistant are unsuitable for use in treating *Enterobacterales* infection in any body site. For acquired resistance monitoring, this isolate would be considered wild-type with no phenotypic resistance detected.

Fluoroquinolones:

Enrofloxacin	<=0.12	Susceptible	Feline
Marbofloxacin	<=0.12	Susceptible	Feline
Orbifloxacin	<=1	Susceptible	Feline
Pradofloxacin	<=0.25	Susceptible	Feline

Folate pathway antagonists:

Trimethoprim/Sulfamethoxazole	<=0.5	No interpretation	Concentration range does not
			allow determination WT/NWT

PLEASE NOTE: Unfortunately, we lack feline-specific clinical interpretations for some of antimicrobial agents reported. The ECOFF reported is an in vitro measure which may aid in clinical decision-making in conjunction with pharmacologic and efficacy information. Please review with caution.

Few more definitions....

Definitions:

<u>Susceptible</u>: a category defined by a breakpoint that implies that isolates with an MIC at or below or zone diameters at or above the susceptible breakpoint are inhibited by the usually achievable concentrations of antimicrobial agent when the dosage recommended to treat the site of infection is used, resulting in likely clinical efficacy.

Intermediate: a category defined by a breakpoint that includes isolates with MICs or zone diameters within the intermediate range that approach usually attainable blood and tissue levels and for which response rates may be lower than for susceptible isolates; NOTE: The intermediate category implies clinical efficacy in body sites where the drugs are physiologically concentrated or when a higher-than-normal dosage of a drug can be used. This category also includes a buffer zone, which should prevent small, uncontrolled, technical factors from causing major discrepancies in interpretations, especially for drugs with narrow pharmacotoxicity margins.

<u>Resistant:</u> a category defined by a breakpoint that implies that isolates with an MIC at or above or zone diameters at or below the resistant breakpoint are not inhibited by the usually achievable concentrations of the agent with normal dosage schedules and/or that demonstrate MICs or zone diameters that fall in the range in which specific microbial resistance mechanisms are likely, and clinical efficacy of the agent against the isolate has not been reliably shown in treatment studies. <u>ECOFF</u>: Distinguishes between organisms with and without phenotypic resistance.

<u>Wild-type:</u> No phenotypic resistance <u>Non-wild-type:</u> Phenotypic resistance

Case 2: Sick calves

- 2 month old Holstein calves
 - 8 dead
 - 25 affected
 - 500 in group
- Breathing hard
- Treatment with Tulathromycin and/or tetracycline
- Die within 1-2 days
- Evidence of septicemia on histo
- Salmonella Dublin cultured from lung

S. Dublin AST

Isolate	Antimicrobial Drug	MIC	Interpretation
Salmonella Dublin	Ampicillin	2	
Salmonella Dublin	Ceftiofur	0.5	
Salmonella Dublin	Clindamycin	>16	
Salmonella Dublin	Danofloxacin	<=0.12	
Salmonella Dublin	Enrofloxacin	<=0.12	
Salmonella Dublin	Florfenicol	>8	
Salmonella Dublin	Gentamicin	>16	
Salmonella Dublin	Neomycin	<=4	
Salmonella Dublin	Penicillin G	>8	60 83 60 83
Salmonella Dublin	Spectinomycin	64	
Salmonella Dublin	Sulphadimethoxime	>256	
Salmonella Dublin	Tetracycline	>8	
Salmonella Dublin	Tiamulin	>32	
Salmonella Dublin	Tilmicosin	>64	
Salmonella Dublin	Trimethoprim-Sulfa	<=2	
Salmonella Dublin	Tulathromycin	32	
Salmonella Dublin	Tylosin	>32	

THE LAW?

The Animal Medicinal Drug Use Clarification Act of 1994 (AMDUCA) permits veterinarians to prescribe extralabel uses of certain approved new animal drugs and approved human drugs for animals under certain conditions. Extralabel use refers to the use of an approved drug in a manner that is not in accordance with the approved label directions.

The list

The following drugs, families of drugs, and substances are prohibited for extralabel animal and human drug uses in food-producing animals.

- (1) Chloramphenicol;
- (9) Sulfonamide drugs in lactating dairy cattle (except approved use of sulfadimethoxine, sulfabromomethazine, and sulfaethoxypyridazine);
- (10) Fluoroquinolones
- (11) Glycopeptides.
- (13) Cephalosporins (not including cephapirin) in cattle, swine, chickens, or turkeys:
 - (i) For disease prevention purposes;
 - (ii) At unapproved doses, frequencies, durations, or routes of administration; or
 - (iii) If the drug is not approved for that species and production class.

THE LAW

Isolate	Antimicrobial Drug	MIC	Interpretation
Salmonella Dublin	Ampicillin	2	
Salmonella Dublin	Ceftiofur	0.5	
Salmonella Dublin	Clindamycin	>16	
Salmonella Dublin	Danofloxacin	<=0.12 ←	
Salmonella Dublin	Enrofloxacin	<=0.12	
Salmonella Dublin	Florfenicol	>8	
Salmonella Dublin	Gentamicin	>16	
Salmonella Dublin	Neomycin	<=4	
Salmonella Dublin	Penicillin G	>8	
Salmonella Dublin	Spectinomycin	64	
Salmonella Dublin	Sulphadimethoxime	>256	
Salmonella Dublin	Tetracycline	>8	
Salmonella Dublin	Tiamulin	>32	
Salmonella Dublin	Tilmicosin	>64	
Salmonella Dublin	Trimethoprim-Sulfa	<=2	
Salmonella Dublin	Tulathromycin	32	
Salmonella Dublin	Tylosin	>32	

The shorter list...

Isolate	Antimicrobial Drug	MIC	Interpretation
Salmonella Dublin	Ampicillin	2	
Salmonella Dublin	Ceftiofur	0.5	
Salmonella Dublin	Florfenicol	>8	
Salmonella Dublin	Trimethoprim-Sulfa	<=2	

Interpretations and Comments

Isolate	Antimicrobial Drug	MIC	Interpretation
Salmonella Dublin	Ampicillin	2	Resistant
Salmonella Dublin	Ceftiofur	0.5	Susceptible
Salmonella Dublin	Florfenicol	>8	Resistant
Salmonella Dublin	Trimethoprim-Sulfa	<=2	NA

Please Note: Bovine breakpoints are derived from Bovine Pasteurellaceae breakpoints and may not provide as accurate clinical efficacy information. Unfortunately, we also lack bovine-specific clinical interpretations for one of antimicrobial agents reported. The MIC reported is an in vitro measure which may aid in clinical decision-making in conjunction with pharmacologic and efficacy information. Please review with caution.

An alternative...

Isolate	Antimicrobial Drug	MIC	Interpretation
Salmonella Dublin	Ampicillin	2	Susceptible
Salmonella Dublin	Ceftiofur	0.5	NA
Salmonella Dublin	Florfenicol	>8	NA
Salmonella Dublin	Trimethoprim-Sulfa	<=2	Susceptible

Please Note: Interpretaions provided are derived from human Enterobacteriaceae breakpoints and may not provide as accurate clinical efficacy information. Unfortunately, we also lack bovine-specific and human clinical interpretations for antimicrobial agents reported for this isolate. The MIC reported is an in vitro measure which may aid in clinical decision-making in conjunction with pharmacologic and efficacy information. Please review with caution.

An alternative...

Isolate	Antimicrobial Drug	MIC	Interpretation
Salmonella Dublin	Ampicillin	2	Wild-type
Salmonella Dublin	Ceftiofur	0.5	Wild-type
Salmonella Dublin	Florfenicol	>8	Non-WT
Salmonella Dublin	Trimethoprim-Sulfa	<=2	Wild-type

Please Note: Interpretations provided are derived from ECOFFs and are not a clinical parameter. However, the MIC reported is an in vitro measure which may aid in clinical decision-making in conjunction with pharmacologic and efficacy information. Please review with caution.

Last try!

Isolate	Antimicrobial Drug	MIC	Interpretation S	pecies Interpretation
Salmonella Dublin	Ampicillin	2	Resistant	Bovine
Salmonella Dublin	Ceftiofur	0.5	Susceptible	Bovine
Salmonella Dublin	Florfenicol	>8	Resistant	Bovine
Salmonella Dublin	Trimethoprim-Sulfa	<=2	Susceptible	Human

Please Note: Both Bovine breakpoints, derived from Bovine Pasteurellaceae breakpoints, and Human breakpoints, which are Enterobacteriaceae specific, were used which may not provide as accurate clinical efficacy information. Please review with caution. For acquired resistance monitoring, this isolate would be considered wild-type with no phenotypic resistance detected to Ampicillin.

It's complicated for us and we need help to reach that escape door....

Where do we want to go?

- Education on many levels
- Promotion of technical resources
- Species-specific breakpoints
- Consistent reporting of interpretations
- More funding for veterinary stewardship across all species
- Small steps toward informative communication in reporting

Acknowledgements

- CLSI VAST
 - Dubra Diaz
- WSU
 - Dale Moore

Beyond Susceptible/Intermediate/ Resistant (SIR): Enhancing Laboratory Communication with Reporting Comments

Antifungal SC Perspective

Tanis Dingle, Ph.D., FCCM, D(ABMM)
CLSI Educational Workshop
January 25, 2019

DISCLOSURES

Financial Interests or Benefits: Served as an investigator/received grant support from bioMérieux, Amplyx, AVIR Pharma, F2G, and JMI Laboratories.

CLSI M60, 1st Edition – Published Breakpoints

Table 1. Minimal Inhibitory Concentration Breakpoints for *In Vitro* Broth Dilution Susceptibility Testing of *Candida* spp. and Select Antifungal Agents After 24-Hour Incubation

		MIC Breakpoints and Interpretive			
		Categories, µg/mL			
Antifungal Agent	Species	S	I*	SDD^{\dagger}	R
Anidulafungin ^{1,‡}	C. albicans	≤0.25	0.5	-	≥1
	C. glabrata	≤0.12	0.25	-	≥0.5
	C. guilliermondii	≤2	4	_	≥8 ≥1
	C. krusei	≤0.25	0.5	-	≥1
	C. parapsilosis	≤2	4		≥8 ≥1
	C. tropicalis	≤0.25	0.5	-	≥1
Caspofungin ^{1,‡,§}	C. albicans	≤0.25	0.5		≥1
	C. glabrata	≤0.12	0.25	1	≥0.5
	C. guilliermondii	≤2	4	-	≥8
	C. krusei	≤0.25	0.5	-	≥1
	C. parapsilosis	≤2	4	-	≥8
	C. tropicalis	≤0.25	0.5	-	≥1
Micafungin ^{1,‡}	C. albicans	≤0.25	0.5	ı	≥1
	C. glabrata	≤0.06	0.12	ı	≥0.25
	C. guilliermondii	≤2	4	-	≥8
	C. krusei	≤0.25	0.5	-	≥1
	C. parapsilosis	≤2	4	_	≥8
	C. tropicalis	≤0.25	0.5	-	≥1
Voriconazole ^{2,‡,¶}	C. albicans	≤0.12	0.25-0.5	ı	≥1
	C. glabrata#	-	-	-	-
	C. krusei	≤0.5	1	ı	≥2
	C. parapsilosis	≤0.12	0.25-0.5	-	≥1
	C. tropicalis	≤0.12	0.25-0.5	-	≥1
Fluconazole ^{3,†}	C. albicans	≤2	-	4	≥8
	C. glabrata**	-	-	≤32	≥64
	C. kruse톆	-	-	-	-
	C. parapsilosis	≤2	-	4	≥8
	C. tropicalis	≤2	-	4	≥8

SDD?

Intrinsic Resistance?

Site-specific Reporting?

Susceptibility
Prediction Rules?

Things you may want to convey using susceptibility comments...

- Interpretation Definitions
 - Susceptible-Dose Dependent (SDD)
 - Epidemiologic Cutoff Values (ECV)
- Intrinsic resistance
- Site-specific drug penetration
- Susceptibility prediction
- Age-related antifungal use
- Use of alternative breakpoints
- Empiric therapy options

Susceptible Dose Dependent (SDD)

Yeast	Fluconazole SDD Breakpoint
C. albicans, C. parapsilosis, C. tropicalis	4 μg/mL
C. glabrata	≤32 μg/mL

- Reporting out SDD with no context is confusing for the end user
- Susceptibility depends on achieving the maximum possible blood levels
- For fluconazole dosing in normal adults, higher doses may be required above the standard 6mg/kg/day

Susceptibility

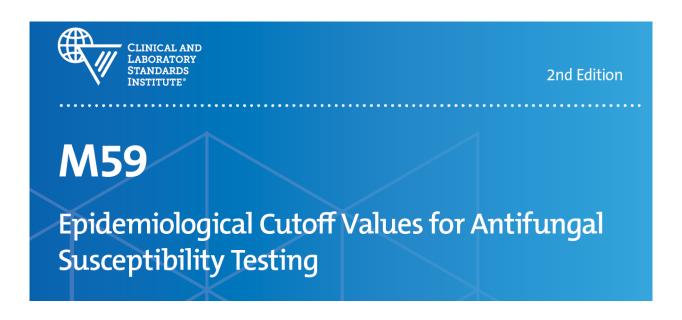
Susceptibility	
	Candida glabrata
	MIC
Fluconazole	S-DD 1
Micafungin	S
Susceptibility is of	dependent upon achieving the maximum possible blood level and may be used in select clinical
situations. Cons	sult Medical Microbiologist on call, if required.

S - Susceptible S-DD - Susceptible-dose dependent

Consider:

Information on dosing

- Be cognizant of adult vs pediatric patients*



Appropriate stakeholders

^{*}Nielsen, L.E., et al. 2019. One size fits all? Application of susceptible-dose-dependent breakpoints to pediatric patients and laboratory reporting. J Clin Microbiol, 58(1), e01446-19.

Epidemiologic Cutoff Values (ECV)

ECV's available for:

- A number of Candida species without clinical breakpoints
- Cryptococcus species (specific molecular types)
- A number of *Aspergillus* species

ECV Comment Guidance: CLSI M57, 1st Ed.

Table 1. Example Report Explaining the Significance of ECVs for Filamentous Fungi

	Antifungal	-		Suggested Comment for Discussion and for
Isolate	Agent	MIC	ECV	the Report
Aspergillus fumigatus	XYZ	2 μg/mL	0.5 μg/mL	There are currently no breakpoints or interpretive criteria for <i>A. fumigatus</i> and antifungal agent "XYZ." The "XYZ" MIC/MEC is above the WT MIC, which suggests that this isolate may have an acquired mechanism of resistance and could be considered NWT.
				The clinical implication of finding an NWT MIC/MEC is currently unknown. When the agent in question is being used for treatment, the patient should undergo clinical review, and in consultation with an infectious diseases physician or pharmacist, the decision should be made to continue the agent at the current dose, increase the dose of the agent, or switch to an alternative agent.

Abbreviations: ECV, epidemiological cutoff value; MEC, minimal effective concentration; MIC, minimal inhibitory concentration; NWT, non-wild-type; WT, wild-type.

Referral Specimen/Isolate (Final result)

Culture	Isolate submitted as:
	Aspergillus fumigatus (A)

Susceptibility

	Aspergillus fumigatus
	MIC
Itraconazole	WT 1

There are no established clinical breakpoints for this antifungal. Results suggest that SUSCEPTIBILITY IS LIKELY (wild type) but may not reliably predict response in all clinical situations. For the treatment of critical infection, consult the microbiologist on-call or infectious desease physician, if required.

WT - Wild-type

Non-wild-type (NWT) – Results suggest RESISTANCE IS LIKELY (non-wild-type)...

Another option:

"Results distinguish between wild-type (WT) strains (no resistance mechanism) and those with a resistance mechanism (non-wild-type, NWT). The results do not predict clinical outcome."

Intrinsic Resistance and Site-Specific Drug Penetration

MIC.42700 Antifungal Agents to Test/Report

Phase II

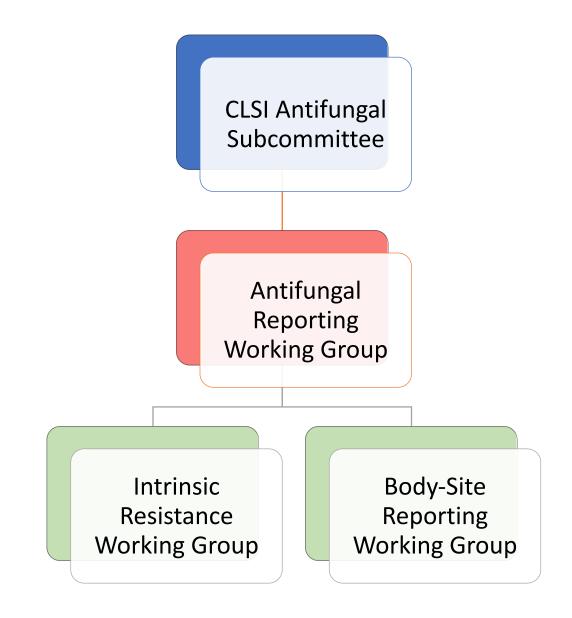
There are written policies to ensure that only antifungal agents appropriate for the organism and body site are routinely tested and reported.

NOTE: The microbiology department should consult with the medical staff and pharmacy to develop a list of antifungal agents to be reported for specific organisms isolated from certain body sites, instead of indiscriminant susceptibility testing and reporting of all fungal isolates or reporting of all antifungal agents that might be included on a test panel. Isolates from body sites for which susceptibility might be routinely tested and reported include Candida spp. isolates from blood cultures.

Appendix B. Intrinsic Resistance

Intrinsic resistance is defined as inherent or innate (not acquired) antimicrobial resistance, which is reflected in wild-type antimicrobial patterns of all or almost all representatives of a species. Intrinsic resistance is so common that susceptibility testing is unnecessary. For example, *Citrobacter* spp. are intrinsically resistant to ampicillin.

These tables can be helpful in at least three ways: 1) they provide a way to evaluate the accuracy of testing methods; 2) they aid in the recognition of common phenotypes; and 3) they can assist with verification of cumulative antimicrobial susceptibility test data. In the tables, an "R" occurring with an antimicrobial agent/organism combination means that strains should test resistant. A small percentage (1% to 3%) may appear susceptible due to method variation, mutation, or low levels of resistance expression.


Each laboratory should decide which agents to test and report in consultation with institutional leaders representing infectious diseases practitioners, the pharmacy and therapeutics and infection control committees of the medical staff, and the antimicrobial stewardship team. If tested, the result for an antimicrobial agent/organism combination listed as having intrinsic resistance should be reported as resistant. Consideration may be given to adding comments regarding intrinsic resistance of agents not tested. See Appendix A, footnote "a."

Appendix B. (Continued)

B1. Enterobacteriaceae

Antimicrobial Agent Organism	Ampicillin	Amoxicillin- clavulanate	Ampicillin- sulbactam	Piperacillin	Ticarcillin	Cephalosporins I: Cefazolin, Cephalothin	Cephamycins: Cefoxitin, Cefotetan	Cephalosporin II: Cefuroxime	Imipenem	Tetracyclines	Tigecycline	Nitrofurantoin	Polymyxin B Colistin	Aminoglycosides
Citrobacter freundii	R	R	R			R	R	R						
Citrobacter koseri, Citrobacter amalonaticus group ^a	R				R									
Enterobacter cloacae complexb	R	R	R			R	R							
Escherichia coli	There is	s no intrin	sic resista	ance to β	lactams i	n this orgai	nism.							
Escherichia hermannii	R				R									
Hafnia alvei	R	R	R			R	R							
Klebsiella (formerly Enterobacter) aerogenes	R	R	R			R	R							
Klebsiella pneumoniae, Klebsiella oxytoca, Klebsiella variicola	R				R									
Morganella morganii	R	R				R		R	С		R	R	R	
Proteus mirabilis		There is no intrinsic resistance to penicillins and cephalosporins in this organism.						this	С	R	R	R	R	
Proteus penneri	Ř					R		R	С	R	R	R	R	
Proteus vulgaris	R					R		R	С	R	R	R	R	
Providencia rettgeri	R	R				R			С	R	R	R	R	
Providencia stuartii	R	R				R			С	R	R	R	R	d
Raoultella spp.e	R				R									
• •			+											

Antifungal Intrinsic Resistance

CLSI M60, 1st Ed: "Isolates of *C. krusei* are assumed to be intrinsically resistant to fluconazole, so their MICs should not be interpreted using this scale."

CLSI recommendations to come for:

Organism	Antifungal
Cryptococcus spp., Rhodotorula spp. and Trichosporon spp.	Echinocandins
Mucorales	Fluconazole Voriconazole

Referral Specimen/Isolate (Final result)

Culture	Isolate submitted has been identified as:
	Cryptococcus neoformans (A)

Susceptibility

	Cryptococ	cus neoformans ^{Iso1}
	MIC	
5-Fluorocytosine	4.	ug/mL
Amphotericin B	0.06	ug/mL
Fluconazole	2.	ug/mL
land Onestandari		

Iso1 - Cryptococcus neoformans:

Clinical breakpoint not available. The current data is insufficient to demonstrate a correlation between in vitro susceptibility testing and clinical outcome.

Cryptococcus species are intrinsically resistant to echinocandins.

Site-Specific Drug Penetration

CLSI recommendations to come for:

- Polyenes
- Flucytosine (5-FC)
- Echinocandins
 - CNS, eye, urine
- Azoles
 - CNS, eye, urine

Fluconazole tissue and fluid concentrations

Vitreous Humor 0.7-0.8 x (110) Cerebrospinal Fluid Aqueous Humor 0.8 x (112) 0.5-0.9 x (67) Cerebrum 0.7-2.4 x (71) Heart 1.8 x (71) Lung 1.1-1.6 x (136) Pericardial Fluid 1.0 x (136) Spleen 6.1 x (71) Liver 3.4 x (136) Kidney 4.0 x (71) Pancreas 0.9 x (190) Peritoneum 0.8-1.0 x (193) Fingernail Bone 0.33 x (71) 1.0-2.0 x (219) Synovial Fluid 0.88 x (136, 205) Stratum Corneum 11.0-40.0 x (217) Skeletal Muscle 1.8 x (71) Gynecological Tissues & Fluids 0.8-1.0 x (200, 210) Testes 1.7 x (71) Urine 10.0-13.0 x (67) Prostate 0.3 x (202, 203)

Felton et al. 2014. Clinical Microbiology Reviews, 27(1): 68-88.

Site-Specific Drug Penetration

		Eye			Skin		9	Vagina	9	Hear		ס			D		Prostate	Ç	Brain		Lung				Z.
Compound	Aqueous	Vitreous	Cornea	Tissue	Interstitial fluid	Nail	Tissue	Fluid	Tissue	Pericardial fluid	Liver	Pancreas	Kidney	Tissue	Synovial fluid	Tissue	Fluid	Tissue	CSF	Tissue	Alveolar cells	ELF	Spleen	Muscle	Reference
Fluconazole	х	X	0	х	х	х	х	х	х	х	х	х	х	x o	х	××	х	х	х	х		0	Х	х	(67, 70, 72, 120, 137, 200- 203, 205, 219, 237, 238)
Itraconazole	O X	O ² X	0	× x	×	х	x x	x x	0		х	0	х	х	х	×	×	0	×	X X ⁵	х	×	х	х	(25, 56, 73, 74, 120, 121, 140, 220, 221, 239-242)
Voriconazole	х	×		0	0				× x°		x x		××	х	×			х	×	××	Х	X X	××	0	(58, 80, 81, 83, 114, 142, 153, 154, 208, 224, 243, 252, 253)
Posaconazole		×		х		х												0	×		x	х			(57, 59, 85-89, 223, 244)
AmBd	××	x							X°		х	××	х	0	х			××	х	O 04		x³ O	х		(37, 52, 53, 91, 115, 123, 148, 151, 156, 210, 245-247, 249)
ABLC		O ²							х		х		х	0				0	×	Χ°		x* x	Χ°		(90, 92, 117, 125, 147, 155, 210, 246, 249)
L-AMB	O ²	O ²	O ²	Χ¤					о х		X [⋄]		Χ¢	0				×	×	х		ו ×	X°		(34, 53, 60, 90, 125, 147, 155, 210, 248, 249)
5-FC	0	x		0					0		0		0 0	0	0			0	××	O ⁴		O ³	0	0	(91, 96, 115, 116, 151, 156, 174, 250)
Anidulafungin	0	0		0					0		0		0	0				0	0	0 0	х	х	0 0		(58, 100, 102, 175, 251)
Caspofungin	X O ²	×	O ²						0	ĺ	0		0					0	х	0	х		0	0	(44, 103, 105, 113, 126, 130, 149)
Micafungin	O ²	O ²		Xo							0 0	ו	0 0					×	××	0 0	x	× ×	0		(61, 62, 106-108, 127, 150, 252)

X- human data O- animal data <mark>0 to ≤0.5X plasma []</mark> >0.5X to ≤5X plasma [] >5X plasma [] Felton et al. 2014. Clinical Microbiology Reviews, 27(1): 68-88.

Body Site Reporting Options

- Report susceptibility result with comment
- Restrict reporting with/without comment

e.g. "<1% of active echinocandin drug is excreted into the urine and echinocandins are generally not recommended for treating candiduria."

Susceptibility Prediction

Caspofungin* - susceptibility testing is highly variable for *Candida* spp. and false resistance has been reported.

If Caspofungin tests:	Report:					
Susceptible	Susceptible					
Resistant	 Use micafungin or anidulafungin to predict susceptibility. Perform FKS sequencing. Send to a referral laboratory for confirmation. 					

^{*}As outlined in CLSI M60, 1st Ed.

Susceptibility Prediction

 An option for reporting of caspofungin for Candida species could be via comment:

"The result of micafungin susceptibility predicts caspofungin susceptibility."

• Alternatively, the caspofungin result could be automatically compiled in the LIS based on the micafungin result.

Age Related Antifungal Use

- Certain antifungal agents may not be appropriate for certain age groups (e.g. pediatric patients).
- Work with your stewardship and infectious disease colleagues to determine if commenting on susceptibility reports may be appropriate.

e.g. "Echinocandin use in neonates and infants (< 2 months of age) may not be appropriate."

Use of Alternate Breakpoints

Informs provider when not using your typical breakpoint standards

Antifungal	Interpretation	Participants No.	%
Amphotericin B	Susceptible	81	38.0
	Resistant	1	0.5
	No Interpretation	131	61.5

CAP F-C 2019, C. glabrata

"Interpretation of Amphotericin B based on EUCAST clinical breakpoints."

Use of Alternate Breakpoints

TEST: Culture

SPECIMEN TYPE: Swab

SPECIMEN SOURCE: Ear, Right

COLLECTED: 2020/01/01 13:01

RECEIVED: 2020/01/01 15:30

ACCESSION: EA-20-0012345

FINAL REPORT

Candida auris isolated

Candida auris
Interpretation

Amphotericin B S
Fluconazole S
Micafungin S

Tentative interpretive breakpoints for *Candida auris* defined by the Centers for Disease Control and Prevention: https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html.

Empiric Therapy

- Comments regarding empiric therapy may be useful:
 - if using a rapid identification system
 - if not routinely performing susceptibility testing

Randomized Trial of Rapid Multiplex Polymerase Chain Reaction–Based Blood Culture Identification and Susceptibility Testing

Ritu Banerjee, 1,a Christine B. Teng, 2,a Scott A. Cunningham, Sherry M. Ihde, James M. Steckelberg, James P. Moriarty, Nilay D. Shah, Jayawant N. Mandrekar, and Robin Patel 3,4

¹Division of Pediatric Infectious Diseases, Mayo Clinic, Rochester, Minnesota; ²Department of Pharmacy, National University of Singapore and Tan Tock Seng Hospital, Singapore; ³Division of Laboratory Medicine and Pathology, ⁴Division of Infectious Diseases, ⁵Division of Health Care Policy and Research, and ⁶Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota

Rapid Multiplex PCR	Reporting Comments
Result	
Candida albicans +	"Preferred empiric therapy, pending
Candida parapsilosis +	antimicrobial susceptibility results, is fluconazole
Candida tropicalis +	unless there is QTc prolongation or other clinical
	contraindication. If the patient is unstable,
	consider empiric caspofungin."
Candida glabrata +	"Preferred empiric therapy, pending
	antimicrobial susceptibility results, is caspofungin
	or an amphotericin preparation, unless clinically
	contraindicated."

Additional options for conveying antifungal susceptibility information

- Links to websites/literature
- Links to annual antibiograms

YEAST (ALL AGES, STERILE SITES)		Amphotericin B ^a	Fluconazole	Micafungin
	n	1		
Candida albicans	95	100	100	100
Candida glabrata	55	98	96 ^b	95

^aUsing interpretive breakpoints from EUCAST.

^bThis number represents % susceptible dose-dependent isolates.

Comments: Tips and Tricks

Keep it simple

DO NOT over comment!

Engage your stakeholders

Be mindful of the clinical impact of the comment

Keep your IT colleagues close

Review final reports

Or else you may end up in this scenario...

Referral Specimen/Isolate (Final result)

Culture	Isolate submitted as:	
	Candida dubliniensis (A)	

Susceptibility

- acceptantly	
	Candida dubliniensis
	MIC
Amphotericin B	WT ¹
Fluconazole	WT ²
Micafungin	WT ³
Voriconazole	WT ⁴

- There are no established clinical breakpoints for this antifungal. Results suggest that SUSCEPTIBILITY IS LIKELY (wild type) but may not reliably predict response in all clinical situations. For the treatment of critical infection, consult the microbiologist on-call or infectious desease physician, if required.
- There are no established clinical breakpoints for this antifungal. Results suggest that SUSCEPTIBILITY IS LIKELY (wild type) but may not reliably predict response in all clinical situations. For the treatment of critical infection, consult the microbiologist on-call or infectious desease physician, if required.
- There are no established clinical breakpoints for this antifungal. Results suggest that SUSCEPTIBILITY IS LIKELY (wild type) but may not reliably predict response in all clinical situations. For the treatment of critical infection, consult the microbiologist on-call or infectious desease physician, if required.
- There are no established clinical breakpoints for this antifungal. Results suggest that SUSCEPTIBILITY IS LIKELY (wild type) but may not reliably predict response in all clinical situations. For the treatment of critical infection, consult the microbiologist on-call or infectious desease physician, if required.

WT - Wild-type

Thank you! Questions?