

Instructions for Use of 2023 BIT Part F

CLSI Version 1.0. This was last updated on 15 May 2023 and has been approved by CLSI's Outreach Working Group. This is Part E of the of the 2023 Breakpoint Implementation Toolkit. To access the entire BIT Toolkit, visit https://clsi.org/bit-toolkit/.

Table of Contents	
Workbook Overview	
Accuracy	,
Using the Excel for Accuracy6)
Clearing Test Data	,
Analysis Within the Breakpoint Implementation Toolkit Set Worksheets	l
Precision/Reproducibility	
Using the Excel for Precision (Reproducibility)10	i
Reviewing Aggregated Summary Data11	
Unlocking the Spreadsheet and Hidden Columns	

Accuracy Instructions for Prefilled Excel

Workbook Overview

- 1. This workbook contains Microsoft Excel VBA Macros.
- 2. This workbook can be used to summarize and determine the performance of a test generating minimum inhibitory concentration (MIC) values (eg, broth microdilution panel, MIC card, or gradient diffusion strips) using specific CDC and FDA Antimicrobial Resistance Isolate Bank (AR Bank) Breakpoint Implementation Toolkit (BIT) isolate sets.
- **3.** This workbook contains multiple worksheets that are stratified by AR Bank BIT sets specifically curated to validate updated CLSI breakpoints for specific antimicrobials (Table 1). Each worksheet is prefilled with the list of curated isolates and their AR Bank minimal inhibitory concentration (MIC) values and interpretations.
 - **a.** BIT-1 (AR Bank panel name: BIT): Enterobacterales for ertapenem, meropenem, imipenem, cefazolin, aztreonam, cefepime, ceftazidime, cefotaxime, ceftriaxone, ciprofloxacin, or levofloxacin.
 - **b.** BIT-2 (AR Bank panel name: PTA): Enterobacterales for piperacillin/tazobactam, gentamicin, tobramycin, amikacin, or colistin.
 - **c.** BIT-3 (AR Bank panel name: PFA): Pseudomonas aeruginosa for meropenem, imipenem, aztreonam, cefepime, ceftazidime, piperacillin/tazobactam, tobramycin, ciprofloxacin, levofloxacin, or colistin.
 - **d.** BIT-4 (AR Bank panel name: ACI): Acinetobacter spp. for meropenem, imipenem, or colistin.

NOTE: Within each BIT worksheet, the specific antimicrobials are independent of each other. This means the user has the choice to validate or verify some, but not all, antimicrobials.

Table 1. Summary of Organism and Breakpoints Included in the Breakpoint Implementation Toolkit

		2023 CLSI Breakpoint	
Antimicrobial	Reporting Group	(S/I or SDD/R)	BIT Set
Amikacin	Enterobacterales	4/8/16	BIT-2
Aztreonam	Enterobacterales	4/8/16	BIT-1
	Pseudomonas aeruginosa	8/16/32	BIT-3
Cefazolin	Enterobacterales	2/4/8	BIT-1
Cefepime	Enterobacterales	2/4-8/16	BIT-1
	Pseudomonas aeruginosa	8/16/32	BIT-3
Cefotaxime	Enterobacterales	1/2/4	BIT-1
Ceftazidime	Enterobacterales	4/8/16	BIT-1
	Pseudomonas aeruginosa	8/16/32	BIT-3
Ceftriaxone	Enterobacterales	1/2/4	BIT-1
Colistin	Enterobacterales	2/4	BIT-2
	Pseudomonas aeruginosa	2/4	BIT-3
	Acinetobacter baumannii	2/4	BIT-4
Ciprofloxacin	Enterobacterales	0.25/0.5/1	BIT-1
	Pseudomonas aeruginosa	0.5/1/2	BIT-3
Ertapenem	Enterobacterales	0.5/1/2	BIT-1
Gentamicin	Enterobacterales	2/4/8	BIT-2
Imipenem	Enterobacterales	1/2/4	BIT-1
	Pseudomonas aeruginosa	2/4/8	BIT-3
	Acinetobacter baumannii	2/4/8	BIT-4
Levofloxacin	Enterobacterales	0.5/1/2	BIT-1
	Pseudomonas aeruginosa	1/2/4	BIT-3
Meropenem	Enterobacterales	1/2/4	BIT-1
	Pseudomonas aeruginosa	2/4/8	BIT-3
	Acinetobacter baumannii	2/4/8	BIT-4
Piperacillin/tazobactam	Enterobacterales	8/16/32	BIT-2
	Pseudomonas aeruginosa	16/32/64	BIT-3
Tobramycin	Enterobacterales	2/4/8	BIT-2
	Pseudomonas aeruginosa	1/2/4	BIT-3

Abbreviations: BIT, breakpoint implementation toolkit; I, intermediate; R, resistant; S, susceptible.

- **4.** For each BIT set, 5 isolates have been suggested for reproducibility/precision testing. Within each BIT set tab, these recommended isolates are highlighted in green. These isolates are recommendations; the laboratory may decide to use other strains, including QC organisms. At minimum to evaluate precision; 3 isolates should be included for each antimicrobial agent.
- **5.** Data are only entered in cells that are shaded orange (see below for detailed instructions). Other cells contain formulas that depend upon data entered and must not be modified. There are also hidden cells that perform modifications and/or calculations to the data that are necessary for proper evaluation.
- 6. The worksheets are protected for the user's benefit. However, if a user would like to view hidden columns and/or view/edit formulas, the worksheets can be unprotected without a password.
- 7. Users should not copy and paste data from external sources to this spreadsheet, doing so invalidates data validation rules set to certain cells. Mathematical calculations in hidden cells depend upon proper data format (ie, all numeric values for MICs).
- **8.** The Summary tab will display aggregate accuracy performance from each completed study by antimicrobial and reporting group. If multiple reporting groups were tested for a single antimicrobial, the combined overall accuracy is displayed.

WARNING: Any manipulation beyond the instructions provided here may invalidate formulas and lead to erroneous results.

Accuracy

Accuracy is defined as the closeness of agreement between a measured quantity value and a true quantity value of a measurand (AR Bank MIC). For AST, accuracy is the agreement of the test system result with the result generated for the same isolate with the appropriate reference method. To establish the performance characteristics of a test system, a minimum of 30 isolates should be tested. If a laboratory were verifying the performance characteristics established by the manufacturer, the lab may choose to test fewer isolates. Final results should be used if discrepancy testing was performed.

Using the Excel for Accuracy

1. Find the appropriate BIT tab and navigate horizontally to the specific antimicrobial being validated. This area is indicated by a header describing drug name and CLSI breakpoints being validated. Ertapenem is shown below.

	А	В	С	0)	E	F	н	J	K	M	0	Q	R	S
1			AR Bank BI	Validation Set				E	rtapenem Br	eakpoints 0	.5(S)/1(I)/2(R)			
2	This set can b	e used to valid	iate Enterobacti	erales and the following:	antimicrobials:	N 'S'	21								1
3	ertapenem, m	eropenem, in	nipenem, cefazo	lin*, aztreonam, cefepim	ne, ceftazidime,	N 'I'	0		Clear E	rtapenem Te	stData				· · · · · · ·
4	cefotaxime, c	eftriaxone, cip	profloxacin, levo	floxacin		N 'R'	10								
5	Lab Info	rmation		AR Bank Informa	ition	Ertape	enem AR B	ank Data	Ertap	enem Test [Data	Erta	penem (Calculat	tions
	Date	Initials of	AR Bank	Organism		Sign	MIC	Interp	Test Sign	Test MIC	Test	EA	Dilutio	CA	Error
6	Tested 👻	Tester 👻	Number 👻		T	-	T		v	v	Interp –		ns 🗸		
7	1/15/2023	AWS	AR0001	Escherichia coli			8	R		4	R	YES	-1	YES	
	1/15/2023	AWS	AR0002	Enterohacter cloar	ae	>	8	R	>	16	R	VES	0	VES	
9	2/ 20/ 2020	71115	AR0003	Klebsiella nneumo	oniae	>	8	R		10			Ť		
10			AR0004	Klebsiella pneumo	oniae	>	8	R							
11			AR0005	Klebsiella pneumo	oniae	>	8	R							
12			AR0006	Escherichia coli	Jinde	~	8	R							
13			AR0007	Klebsiella aerogen	165	-	2	R							
14			AR0007	Enterohacter cloar	100	>	8	R							
15			AR0009	Klebsiella aeroger	105		8	R							
16			AR0010	Klebsiella preumo	oniae		0	P							
17			AR0010	Escherichia coli	Jillae		0.25	с С							
10			AR0011	Klebsiella proumo	oniao		0.25	 							
10			AR0012	Escherichia coli	Jillae	1-	0.125	5							
20			AR0013	Escherichia coli		~- /-	0.125	5							
20			AR0014	Escherichia coli		<u>\-</u>	0.125	5 C							
21			AR0015	Escherichia con Klobsiella proumo	oniao	/-	0.5	5 C							
22			AR0010	Kiebsiena prieumo	omae	<=	0.125	5							
23			AR0017	Escherichia con	205	<	0.125	5							
24			AR0010	Kiebsielia aeroger	ies	<= <=	0.125	5							
25			AR0015	Escherichia coli		<= (=	0.125	 		_					
20			AR0020	Citra hastas fround	1::	< <u>-</u>	0.125	5		•					
27			AR0021	Citrobacter freund	111	<=	0.125	5							
28			AR0022	Citrobacter freund	111 4::	<= <-	0.125	5							
29			AR0023	Citrobacter freund	111	<=	0.125	5							
30			AR0024	Citrobacter Koseri		<=	0.125	5							
31			AR0025	Citrobacter Koseri		<=	0.125	5							
32			AR0026	Providencia stuart	11	<=	0.125	5							
33			AR0027	Serratia marcescer	ns	<=	0.125	5							
34			AR0028	Riedsiella oxytoca		<=	0.125	5							
55			AR0029	Shigolla connoi			0.25	5							
30			AR0030	Solgena sonnei	nu sium	<=	0.125	5							
3/	*Breakpoints	used for thera	AR0031	other than uncomplicate	numum ed UTIs due to E-coli. K.	<=	0.125	2							
38	pneumoniae,	and P. mirabil	lis. Breakpoints	are based on a dosage re	gimen of 2 g										
39	administered	every 8 h.							Su	mmary Dat	.a				
40									%	N	Total N				
41								EA	100.0%	2	2				
42								CA	100.0%	2	2				
43								minE	0.0%	0	2				
44								ME	#DIV/0!	0	0				
45								VIVIE	0.0%	U	2				
46															
47		Des 1	110					DIT 0.0.				DIT 4			
	<	Breakp	oint Overviev	Summary	BIT-1 BIT-1 Pre	cision	BIT-2	BIT-2 Precis	sion BIT-3	BIT-3 P	recision	BIT-4	BI1-4	recisio	n
Rea	dy 🛅	🖗 Accessibil	ity: Investigate												

- 2. Only cells that are orange are editable. For test data, only an MIC result is needed; the interpretation is automatically generated based on the MIC entered.
- 3. For each isolate, enter the results (MIC and sign associated with MICs for off-scale values) obtained from the test system/method being evaluated in the [Insert Antimicrobial] Test Data columns. The signs "<=" is used in place of "≤", and "≥" is used in place of "≥". Data validation rules exist for both the Test Sign and Test MIC columns. Users may use the dropdown function (see below) or type in the character or values. If users type in a character or value not in the list, the entry will be rejected.</p>

- a. Enter the numerical MIC value in the Test MIC column.
 - i. When testing a combination agent (eg, piperacillin/tazobactam), only enter the value for the first component (eg, piperacillin).
 - **ii.** When entering data generated by gradient diffusion strips, round up any "in-between" MIC values to the next higher log, dilution (eg, 1.5 is rounded up to 2).
 - iii. For lower MICs, the actual concentration should be used (ie, enter 0.12 as 0.125, 0.06 as 0.063, 0.03 as 0.031...). NOTE: This is specific to this workbook and not related to reporting of MICs. This format is necessary to accurately calculate essential agreement after the MIC conversion to inverse of logarithmic base 2 function: log₂(MIC)=x, where 2^x=MIC.
- **b.** For MIC results that are on-scale (eg, =8), leave **Test Sign** column blank. See AR Bank isolate #1 below.
- **c.** For MIC results that are off-scale, enter the appropriate sign in the **Test Sign** column (eg, if the result is >16, enter or select ">"). See AR Bank isolate # 2 below.

	С	D	E	F	н	J	K	М	0	Q	R	S
	AR Bank BIT	Validation Set	tion Set Ertapenem Breakpoints 0.5(S)									
ie	date Enterobacti	erales and the following antimicrobials:	N 'S'	21								
ir	nipenem, cefazo	lin*, aztreonam, cefepime, ceftazidime,	N 'I'	0		Clear Er	rtapenem Te	stData				
ij	profloxacin, levo	floxacin	N 'R'	10								
		AR Bank Information	Ertape	enem AR Ba	ank Data	Ertap	enem Test (Data	Erta	penem (Calculat	tions
f	AR Bank	Organism	Sign	MIC	Interp	Test Sign	Test MIC	Test	EA	Dilutio	CA	Error
	Number 👻	*	-	-	v	~	-	Interp 👻	Y	ns 👻	•	-
	AR0001	Escherichia coli		8	R		4	R	YES	-1	YES	
	AR0002	Enterobacter cloacae	>	8	R	>	16	R	YES	0	YES	
	AR0003	Klebsiella pneumoniae	>	8	R							

d. There is no need to calculate the categorical interpretation. The interpretation is automatically generated based upon the MIC entered.

WARNINGS: Do not use default copy/paste function or drag data from another excel worksheet or cell. This action will replace existing data validation rules with validation rules from the source and may invalidate formulas, leading to erroneous calculations. Copy and paste function may be used if using the Paste Values under Paste Options. Proceed as follows: select the range of cells to copy data into and right click; select the arrow at Paste Special; select the first option under Paste Values.

Do not copy/paste or drag data from one cell to another in the same worksheet across worksheets. This action may lead to changes in cell reference that are precedents to certain calculations in hidden columns and can lead to erroneous calculations.

Clearing Test Data

If Macros are disabled: Highlight the test data cells to be cleared (**Test Sign** and/or **Test MIC**), right click and select "Clear Contents." This may need to be done in chunks or using the CTRL key.

If Macros are enabled: Click the blue **"Clear [Insert Antimicrobial Name] TestData"** button (indicated by the arrow below) and confirm you want to proceed with deleting test results. This will clear the **Test Sign** and **Test MIC** columns. Each antimicrobial agent has a specific clear button.

	А	В	С	D	F	н	1	K	М	0	Р	Q
1		AR Bank BIT Validation Set			E	rtapenem Br	eakpoints 0	.5(S)/1(I)/2	(R)			
2	This set can be	used to validate Enterobacterales and the	N 'S'	21								
3	following antin	nicrobials: ertapenem, meropenem, imipenem, eonam cefenime ceftazidime cefotaxime	N 'I'	0		Clear E	rtapenem Te	stData				
4	ceftriaxone, cip	profloxacin, levofloxacin	N 'R'	10								
5		AR Bank/Comparator Info	Ertape	enem AR B	ank Data	Ertap	enem Test I	Data	Erta	penem (Calculat	tions
	AR Bank	Organism	Sign	MIC	Interp	Test Sign	Test MIC	Test	EA	Dilutio	CA	Error
6	Number 👻	~	-	-	-	¥	¥	Interp 👻	Y	ns 👻	Y	-
7	1	Escherichia coli		8	R		4	R	YES	-1	YES	
8	2	Enterobacter cloacae	>	8	R	>	16	R	YES	0	YES	
9	3	Klebsiella pneumoniae	>	8	R							
10	4	Klebsiella pneumoniae	>	8	R							

NOTE: The use of Macros clears the Excel "undo stack". This means you can no longer undo (CTRL+Z) to the previous step or action. Saving the file prior to use on a cloud-based file system with version control is recommended. This allows recovery of previous versions of the workbook if data is accidentally cleared by the macro.

Analysis Within the BIT Set Worksheets

As test data are entered, analysis of the results will ensue under the "Calculations" section. This area is read-only and cannot be edited. These columns compare the **Test MICs** and categorical interpretation (**Test Interp**) from the test system to the AR Bank **MIC** and categorical interpretation results (**Interp**).

Essential Agreement (EA): MIC result obtained with the AST system that is within one doubling dilution step from the AR Bank MIC value. Calculations are scaled and adjusted for off-scale results (ie, >32 and >64 are within EA; >32 and 32 are within EA; >32 and 16 are not within EA). If the **Test MIC** of the isolate is in essential agreement with the AR Bank **MIC**, the field will display **YES**; if the results are not in essential agreement, the field will display **NO** and be highlighted red. The overall EA is expressed as a percentage of those data points within EA divided by the total number of isolates tested.

Dilutions: This is the calculated number of \log_2 dilutions the **Test MIC** deviates from the AR Bank **MIC**. This is scaled to the most conservative MIC and adjusted for off-scale results (ie, >32 and >8= 0[exact]; >32 and 32 = -1; >32 and >= 0). This column can be used to assess overall bias of results.

Category Agreement (CA): The agreement of interpretation (eg, susceptible, intermediate, susceptible-dose dependent, nonsusceptible, and resistant) results between the test and the interpretation of the AR Bank MIC result. If the **Test Interp** of the isolate is in agreement with the AR Bank Interp, the field will display **YES**; if the results are not in categorical agreement, the field will display **NO** and be highlighted red.

The overall CA is expressed as a percentage of those data points within CA divided by the total number of isolates tested.

Errors: The type of error (minor, major, very major) if CA is not obtained.

- **Minor Error (minE):** Difference in **Test Interp** and AR Bank **Interp** where one result is intermediate (I) (or susceptible-dose dependent [SDD]) and the other is susceptible or resistant. The overall minor error frequency is expressed as a percentage of those data points having a minor error divided by the total number of isolates tested.
- **Major Error (ME):** Error when the AR Bank **Interp** is susceptible and the **Test Interp** is resistant. The overall major error frequency is expressed as a percentage of those data points having a major error divided by the total number of susceptible AR Bank isolates tested.
- Very Major Error (VME): Error when the AR Bank Interp is resistant and the Test Interp is susceptible. The overall very major error frequency is expressed as a percentage of those data points having a very major error divided by the total number of resistant AR Bank isolates tested.

Precision/Reproducibility

Each AR Bank BIT set includes a corresponding Precision tab. Precision (or reproducibility) is defined as closeness of agreement between the results of successive measurements of the same analyte. Up to five isolates may be tested three separate times (separate inoculum preparations) to characterize the precision of the test system. These isolates may include a combination of AR Bank isolates and quality control strains (eg, ATCC strains).

Using the Excel for Precision (Reproducibility)

1. Navigate to the appropriate precision tab and antimicrobial section. Each BIT set has a corresponding precision tab. Within the tab, each drug has a separate table for calculating precision. The aztreonam table is shown below. Like the accuracy tabs, cells that are orange are editable.

									Aztreonam							
	Icolata	Organism	Result 1		Result 2		Result 3		Interpretation Mode	Result 1	Result 2	Result 3		N	%	N Results Total
	Isolate	Organism	Intials, Date Tested	Interp	Intials, Date Tested	Interp	Intials, Date Tested	Interp	or Median	Equivalency	Equivalency	Equivalency	Category Equivalency	3	100%	3
1	AR0003	Kleb pneumoniae	ASB, 12/1/2022	S	MJM, 12/5/2022	S	ASB, 12/15/2022	S	S	Yes	Yes	Yes				
													Enter Comments Here			
5																
1																

- 2. Enter the Isolate ID and organism.
- **3.** For each isolate, enter the categorical result for each replicate (Result 1, Result 2, Result 3) and the date and initials of the tester.
- **4.** Once the precision data is entered for each isolate, calculations will proceed in gray columns of the table. The most commonly occurring (mode) category is calculated. If no mode exists, then middle interpretation (or "median") is used in the rank of S, I or SDD, R.
 - **a.** If R, R, and I replicate categorical results were obtained for an isolate, the "R" interpretation is considered the mode.
 - **b.** If S, I, R replicate categorical results were obtained for an isolate, the "I" interpretation is considered the middle.
- **5.** Each result is compared to the modal or middle categorical interpretation. The results are considered equivalent if the interpretation of the test result and modal or middle interpretation are the same.
- **6.** The overall category equivalency is calculated as the number of equivalent data points divided by the total number of data points.

Reviewing Aggregated Summary Data

Data are gathered from each tab and antimicrobial/organism validation or verification study to a summary table. The table can display the studies' characteristics (such as number of total isolates tested, number of susceptible and resistant strains) and overall descriptive statistical calculations. The hyperlinks will navigate back to the corresponding antimicrobial's accuracy tab within the BIT worksheet.

\checkmark	Gener	ral 🖉												
1	Α	В	С	D	E	F	1	K	M	0	Q	R	S	Т
1							Acc	uracy: Agr	eement an	d Errors		Prec	ision/Reprod	ucibility
2	Set	Penerting Group	Antimicrobial		AL ICI	NUD	% CA		Errors		' I	N	% Equivalent	N Equivalent
	set	Keporting Group	Anumicrobia	IN	NS			%Minor	%Major	% Very				
3	↓ Î	-	-	Ŧ	-		-	-	· ·	Major 🚽	Ŧ	*	-	-
4	BIT-1	Enterobacterales	Aztreonam	0	0	0						0		0
5	BIT-1	Enterobacterales	Cefazolin	0	0	0						0		0
6	BIT-1	Enterobacterales	Cefepime	0	0	0						0		0
7	BIT-1	Enterobacterales	Cefotaxime	0	0	0						0		0
8	BIT-1	Enterobacterales	Ceftazidime	0	0	0						0		0
9	BIT-1	Enterobacterales	Ceftriaxone	0	0	0						0		0
10	BIT-1	Enterobacterales	Ciprofloxacin	0	0	0						0		0
11	BIT-1	Enterobacterales	Ertapenem	0	0	0						0		0
12	BIT-1	Enterobacterales	Imipenem	0	0	0						0		0
13	BIT-1	Enterobacterales	Levofloxacin	0	0	0						0		0
14	BIT-1	Enterobacterales	Meropenem	31	22	6	90.3%	9.7%	0.0%	0.0%	[15	100%	15
15	BIT-2	Enterobacterales	Amikacin	0	0	0					[0		0
16	BIT-2	Enterobacterales	Gentamicin	0	0	0					[0		0
17	BIT-2	Enterobacterales	Piperacillin/tazobactam	0	0	0					[0		0
18	BIT-2	Enterobacterales	Tobramycin	0	0	0						0		0
19	BIT-3	Pseudomonas aeruginosa	Aztreonam	0	0	0					[0		0
20	BIT-3	Pseudomonas aeruginosa	Cefepime	0	0	0					[0		0
21	BIT-3	Pseudomonas aeruginosa	Ceftazidime	0	0	0					[0		0
22	BIT-3	Pseudomonas aeruginosa	Ciprofloxacin	0	0	0					[0		0
23	BIT-3	Pseudomonas aeruginosa	Imipenem	0	0	0					[0		0
24	BIT-3	Pseudomonas aeruginosa	Levofloxacin	0	0	0					[0		0
25	BIT-3	Pseudomonas aeruginosa	Meropenem	30	11	15	86.7%	13.3%	0.0%	0.0%	[15	100%	15
26	BIT-3	Pseudomonas aeruginosa	Piperacillin/tazobactam	0	0	0					[0		0
27	BIT-3	Pseudomonas aeruginosa	Tobramycin	0	0	0						0		0
28	BIT-4	Acinetobacter baumannii	Imipenem	0	0	0						0		0
29	BIT-4	Acinetobacter baumannii	Meropenem	30	0	28	93.3%	6.7%	#DIV/0!	0.0%		15	100%	15
30	NA	Combined	Aztreonam	0	0	0						0		0
31	NA	Combined	Cefepime	0	0	0						0		0
32	NA	Combined	Ceftazidime	0	0	0						0		0
33	NA	Combined	Ciprofloxacin	0	0	0						0		0
34	NA	Combined	Imipenem	0	0	0						0		0
35	NA	Combined	Levofloxacin	0	0	0						0		0
36	NA	Combined	Meropenem	91	33	49	90.1%	9.9%	0.0%	0.0%		45	100%	45
27	NA	Combined	Dineracillin/tazohactam	0	0	0						0		0

The table adds an additional element of aggregate data for combined reporting groups. The "Combined" under "Reporting Group" is calculated when multiple reporting groups are tested for a single antimicrobial. Overall calculations are performed combining all isolates for all reporting groups. See below for combined analysis of meropenem.

	Α	В	с	D	E	F	1	K	M	0	Q	R	S	Т
1							Acc	curacy: Agreement and Errors				Prec	ision/Reprod	ucibility
2	Set	Reporting Group	Antimicrohial	N	N'S'	N 'R'	% CA		Errors	i		N	% Equivalent	N Equivalent
		inchording group	Antimicrobia					%Minor	%Major	% Very				
з	v						-	*	*	Major 👻	¥		¥	•
29	BIT-1	Enterobacterales	Meropenem	31	22	6	90.3%	9.7%	0.0%	0.0%		15	100%	15
30	BIT-3	Pseudomonas aeruginosa	Meropenem	30	11	15	86.7%	13.3%	0.0%	0.0%		15	100%	15
31	BIT-4	Acinetobacter baumannii	Meropenem	30	0	28	93.3%	6.7%	#DIV/0!	0.0%		15	100%	15
32	NA	Combined	Meropenem	91	33	49	90.1%	9.9%	0.0%	0.0%		45	100%	45
33	BIT-2	Enterobacterales	Piperacillin/tazobactam	0	0	0						0		0
34	BIT-3	Pseudomonas aeruginosa	Piperacillin/tazobactam	0	0	0						0		0
35	NA	Combined	Piperacillin/tazobactam	0	0	0						0		0
36	BIT-2	Enterobacterales	Tobramycin	0	0	0						0		0
37	BIT-3	Pseudomonas aeruginosa	Tobramycin	0	0	0						0		0

NOTE: Essential agreement is not displayed, but can be unhidden, as breakpoint update validation and verification studies should focus assessment of performance on the ability to accurately assign the interpretation based on the new breakpoints.

Unlocking the Spreadsheet and Hidden Columns

Each sheet in the workbook is protected, except for the cells used for user data entry. This is done to prevent user error that may affect calculation cells (eg, misclicks). Users can unlock the sheets without a password as needed. To unlock the specific sheet, navigate to the Review ribbon in the menu bar, and click "Unprotect Sheet." There is no password needed. Any changes should be performed only by experienced Microsoft Excel users.

File	Home	Insert	Draw	Page Layout	Formulas	Data	Review	View	Developer	Help	JMP	Inquire	Power Pivot	
abc		-123		S	ţ	XI (K
Spelling	Thesaurus	Workbook Statistics	Check	Translate	New Comment	Delete Pre Cor	vious Neo nment Comm	t Show	v Notes ents ~	Unprote	ect Prote t Workb	ect Allow Edi	t Unshare Workbook	Hide Ink ~
	Proofing		Accessibilit	y Language		C	omments		Notes			Protect		Ink

There are five hidden columns that perform intermediary calculations necessary to determine EA, number of Dilutions from the AR Bank MIC, CA, and Error type.

		NK	10)																	
	AR Bank Information		Ertaper	nem AR Bank Data			Ertapenem Test Data								Ertapenem Calculations						
AR Bank	Organism	Sign	MIC	Hidden MIC Result	Interp	Hidden MIC	Test Sign	Test MIC	Hidden MIC Result	Test Interp	Hidden MIC	EA	Hidden	Dilutio	CA	Error					
Number 🔻	· · · · · · · · · · · · · · · · · · ·	v	-	(conservative 🚽	-	Result Logg 👻	v	Ψ.	(conservative 👻	v	Result Logge 🔻	v	Ev 👻	n: 🔻	Ŧ	v					
AR0001	Escherichia coli		8	8	R	3															
AR0002	Enterobacter cloacae	>	8	16	R	4															
AR0003	Klebsiella pneumoniae	>	8	16	R	4															

The logic for the hidden columns is described below:

- Hidden MIC Result Conservative (both AR Bank and Test Data areas) Incorporates the sign and calculates the most conservative MIC. This only affects MICs with greater than sign (>), which bumps the MIC to the next higher dilution. For devices that report a greater than or equal to sign (>=, ≥) or less than or equal to sign (<=, ≤), the most conservative MIC is the MIC reported with the sign. Examples of the conversions with and without the various signs are in the table below.
- **Hidden MIC Result Logged** MIC conversion to inverse of logarithmic base 2 function: log₂(MIC)=x, where 2^x=MIC This allows EA and dilution difference to be calculated. Examples of the logged conversions are below.

Reported MIC	Converted MIC Conservative Result	MIC Result Logged
16	16	4
> 16	32	5
>=16	16	4
0.5	0.5	-1
<=0.5	0.5	-1

• **Hidden Eval** - This variable indicates whether an MIC pair is evaluable with a "Yes" or "No" value. Evaluable is defined as when either reference or test MIC is on scale and that can be determined with certainty to be **at least** +1 or -1 dilution from each other along the combined scaled concentration range of MICs (it takes into account when MIC dilutions are not the same and scales it to the most conservative). This is an informational variable and not currently used in any calculations.

