CLSI M100™
Performance Standards for Antimicrobial Susceptibility Testing

CLSI M100 includes updated tables for the Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards CLSI M02, M07, and M11.

A CLSI supplement for global application.
Performance Standards for Antimicrobial Susceptibility Testing

James S. Lewis II, PharmD, FIDSA
Amy J. Mathers, MD, D(ABMM)
April M. Bobenchik, PhD, D(ABMM)
Alexandra Lynn Bryson, PhD, D(ABMM)
Shelley Campeau, PhD, D(ABMM)
Sharon K. Cullen, BS, RAC
Tanis Dingle, PhD, D(ABMM), FCCM
Marcelo F. Galas, BSc
Romney M. Humphries, PhD, D(ABMM), FIDSA
Thomas J. Kirk, Jr., MD, PhD

Brandi Limbago, PhD
Virginia M. Pierce, MD, FIDSA
Sandra S. Richter, MD, D(ABMM), FIDSA
Michael Satlin, MD, MS
Audrey N. Schuetz, MD, MPH, D(ABMM)
Susan Sharp, PhD, D(ABMM), F(AAM)
Patricia J. Simner, PhD, D(ABMM)
Pranita D. Tamma, MD, MHS
Melvin P. Weinstein, MD

Abstract

The data in the tables are valid only if the methodologies in CLSI M02, M07, and M11 are followed. These standards contain information about disk diffusion (CLSI M02) and dilution (CLSI M07 and CLSI M11) test procedures for aerobic and anaerobic bacteria. Clinicians depend heavily on information from the microbiology laboratory for treating their seriously ill patients. The clinical importance of antimicrobial susceptibility test results demands that these tests be performed under optimal conditions and that laboratories have the capability to provide results for the newest antimicrobial agents. The tables presented in CLSI M100 represent the most current information for drug selection, interpretation, and quality control using the procedures standardized in CLSI M02, M07, and M11. Users should replace previously published tables with these new tables. Changes in the tables since the previous edition appear in boldface type.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org.

If you or your organization is not a member and would like to become one, or to request a copy of the catalog, contact us at:
P: +1.610.688.0100 F: +1.610.688.0700 E: customerservice@clsi.org W: www.clsi.org
Table of Contents

Contents

- Abstract .. i
- Committee Membership ... iii
- Overview of Changes ... xii
- CLSI Breakpoint Additions Since 2010 .. xx
- CLSI Breakpoint Revisions Since 2010 ... xx
- CLSI Archived Resources ... xxiii
- Summary of CLSI Processes for Establishing Breakpoints and QC Ranges ... xxvii
- CLSI Reference Methods vs Commercial Methods and CLSI vs US Food and Drug Administration Breakpoints .. xxix
- CLSI Subcommittee on Antimicrobial Susceptibility Testing Mission Statement .. xxx
- Instructions for Use of Tables ... 1
- References .. 20
- Introduction to Tables 1A–1J. Antimicrobial Agents That Should Be Considered for Testing and Reporting by Microbiology Laboratories .. 22
- Table 1A-1. Enterobacterales (excluding *Salmonella/Shigella*) 24
- Table 1A-2. *Salmonella* and *Shigella* spp. ... 26
- Table 1B-1. *Pseudomonas aeruginosa* .. 28
- Table 1B-2. *Acinetobacter* spp. ... 30
- Table 1B-3. *Burkholderia cepacia* complex ... 32
- Table 1B-4. *Stenotrophomonas maltophilia* .. 34
- Table 1B-5. Other Non-Enterobacterales ... 36
- Table 1C. *Staphylococcus* spp. ... 38
- Table 1D. *Enterococcus* spp. .. 40
- Table 1E. *Haemophilus influenzae* and *Haemophilus parainfluenzae* 42
- Table 1F. *Neisseria gonorrhoeae* .. 44
Contents (Continued)

Table 1G. Streptococcus pneumoniae .. 46
Table 1H-1. Streptococcus spp. β-Hemolytic Group .. 48
Table 1H-2. Streptococcus spp. Viridans Group .. 50
Table 1I. Neisseria meningitidis ... 52
Table 1J. Anaerobes ... 54
Introduction to Tables 2A–2J. Zone Diameter and MIC Breakpoints 56
Table 2A-1. Zone Diameter and MIC Breakpoints for Enterobacterales (excluding Salmonella/Shigella) ... 58
Table 2A-2. Zone Diameter and MIC Breakpoints for Salmonella and Shigella spp. ... 70
Table 2B-1. Zone Diameter and MIC Breakpoints for Pseudomonas aeruginosa ... 74
Table 2B-2. Zone Diameter and MIC Breakpoints for Acinetobacter spp. ... 80
Table 2B-3. MIC Breakpoints for Burkholderia cepacia complex 86
Table 2B-4. Zone Diameter and MIC Breakpoints for Stenotrophomonas maltophilia ... 88
Table 2B-5. MIC Breakpoints for Other Non-Enterobacterales 92
Table 2C. Zone Diameter and MIC Breakpoints for Staphylococcus spp. 96
Table 2D. Zone Diameter and MIC Breakpoints for Enterococcus spp. 106
Table 2E. Zone Diameter and MIC Breakpoints for Haemophilus influenzae and Haemophilus parainfluenzae .. 112
Table 2F. Zone Diameter and MIC Breakpoints for Neisseria gonorrhoeae 118
Table 2G. Zone Diameter and MIC Breakpoints for Streptococcus pneumoniae ... 122
Table 2H-1. Zone Diameter and MIC Breakpoints for Streptococcus spp. β-Hemolytic Group ... 128
Table 2H-2. Zone Diameter and MIC Breakpoints for Streptococcus spp. Viridans Group ... 134
Table 2I. Zone Diameter and MIC Breakpoints for Neisseria meningitidis 138
Contents (Continued)

Table 2J. MIC Breakpoints for Anaerobes ... 142
Introduction to Table 2 Dosages. Antimicrobial Agent Dosage Regimens Used to Establish Susceptible or Susceptible-Dose Dependent Breakpoints .. 146
Table 2 Dosages. Antimicrobial Agent Dosage Regimens Used to Establish Susceptible or Susceptible-Dose Dependent Breakpoints ... 148
Table 3A. Tests for Extended-Spectrum β-Lactamases in *Klebsiella pneumoniae*, *Klebsiella oxytoca*, *Escherichia coli*, and *Proteus mirabilis* ... 154
Introduction to Tables 3B and 3C. Tests for Carbapenemases in *Enterobacterales* and *Pseudomonas aeruginosa* ... 158
Table 3B. CarbaNP Test for Suspected Carbapenemase Production in *Enterobacterales* and *Pseudomonas aeruginosa* ... 160
Table 3C. Modified Carbapenem Inactivation Methods for Suspected Carbapenemase Production in *Enterobacterales* and *Pseudomonas aeruginosa* ... 168
Table 3D. Aztreonam Plus Ceftazidime-Avibactam Broth Disk Elution Method ... 182
Table 3E. Tests for Colistin Resistance for *Enterobacterales* and *Pseudomonas aeruginosa* ... 192
Table 3F-1. Test for Performing Disk Diffusion Directly From Positive Blood Culture Broth ... 198
Table 3F-2. Zone Diameter Disk Diffusion Breakpoints for *Enterobacterales* Direct From Blood Culture ... 202
Table 3F-3. Zone Diameter Disk Diffusion Breakpoints for *Pseudomonas aeruginosa* Direct From Blood Culture ... 204
Table 3F-4. Zone Diameter Disk Diffusion Breakpoints for *Acinetobacter* spp. Direct From Blood Culture ... 206
Table 3G. Tests for Detecting β-Lactamase Production in *Staphylococcus* spp. ... 208
Table 3H. Oxacillin Salt Agar Test for Detecting Methicillin (Oxacillin) Resistance in *Staphylococcus aureus* ... 212
Table 3I. Vancomycin Agar Screen for *Staphylococcus aureus* and *Enterococcus* spp. ... 214
Table 3J. Tests for Detecting Inducible Clindamycin Resistance in *Staphylococcus* spp., *Streptococcus pneumoniae*, and *Streptococcus* spp. β-Hemolytic Group ... 216
Table 3K. Test for Detecting High-Level Mupirocin Resistance in *Staphylococcus aureus* ... 220
Table 3L. Test for Detecting High-Level Aminoglycoside Resistance in *Enterococcus* spp. (including disk diffusion) ... 222
Table of Contents (Continued)

- **Table 4A-1.** Disk Diffusion QC Ranges for Nonfastidious Organisms and Antimicrobial Agents Excluding β-Lactam CombinationAgents .. 226
- **Table 4A-2.** Disk Diffusion QC Ranges for Nonfastidious Organisms and β-Lactam Combination Agents .. 232
- **Table 4B.** Disk Diffusion QC Ranges for Fastidious Organisms .. 236
- **Table 4C.** Disk Diffusion Reference Guide to QC Frequency .. 240
- **Table 4D.** Disk Diffusion Troubleshooting Guide .. 240
- **Table 5A-1.** MIC QC Ranges for Nonfastidious Organisms and Antimicrobial Agents Excluding β-Lactam Combination Agents .. 248
- **Table 5A-2.** MIC QC Ranges for Nonfastidious Organisms and β-Lactam Combination Agents .. 258
- **Table 5B.** MIC QC Ranges for Fastidious Organisms (Broth Dilution Methods) .. 264
- **Table 5C.** MIC QC Ranges for *Neisseria gonorrhoeae* (Agar Dilution Method) .. 270
- **Table 5D.** MIC QC Ranges for Anaerobes (Agar Dilution Method) .. 272
- **Table 5E.** MIC QC Ranges for Anaerobes (Broth Microdilution Method) .. 276
- **Table 5F.** MIC Reference Guide to QC Frequency .. 278
- **Table 5G.** MIC Troubleshooting Guide .. 280
- **Table 6A.** Solvents and Diluents for Preparing Stock Solutions of Antimicrobial Agents .. 288
- **Table 6B.** Preparing Stock Solutions for Antimicrobial Agents Provided With Activity Expressed as Units .. 296
- **Table 6C.** Preparing Solutions and Media Containing Combinations of Antimicrobial Agents .. 298
- **Table 7.** Preparing Dilutions of Antimicrobial Agents to Be Used in Agar Dilution Susceptibility Tests .. 304
- **Table 8A.** Preparing Dilutions of Antimicrobial Agents to Be Used in Broth Dilution Susceptibility Tests .. 306
- **Table 8B.** Preparing Dilutions of Water-Insoluble Antimicrobial Agents to Be Used in Broth Dilution Susceptibility Tests .. 308
- **Appendix A.** Suggestions for Confirming Antimicrobial Susceptibility Test Results and Organism Identification for Agents Approved by the US Food and Drug Administration for Clinical Use .. 310
Contents (Continued)

- Appendix B. Intrinsic Resistance .. 318
- Appendix C. QC Strains for Antimicrobial Susceptibility Tests. 324
- Appendix D. Anaerobe Cumulative Antiogram .. 330
- Appendix E. Susceptible-Dose Dependent Interpretive Category 334
- Appendix F. Epidemiological Cutoff Values .. 338
- Appendix G. Using Molecular Assays for Resistance Detection 342
- Appendix H. Cefiderocol Broth Preparation and Reading Broth Microdilution Minimal Inhibitory Concentration End Points 358
- Glossary I (Part 1). β-Lactams: Class and Subclass Designations and Generic Names 364
- Glossary I (Part 2). Non-β-Lactams: Class and Subclass Designations and Generic Names 368
- Glossary II. Antimicrobial Agent Abbreviations, Routes of Administration, and Drug Class 372
- Glossary III. List of Identical Abbreviations Used for More Than One Antimicrobial Agent in US Diagnostic Products 380
- The Quality Management System Approach ... 382
Overview of Changes

CLSI M100-Ed34 replaces the previous edition of the supplement, CLSI M100-Ed33, published in 2023. Major additions, reformatting, and/or table relocation changes are summarized below, followed by additional noteworthy changes detailed by section/table. Changes to content since the previous edition appear in boldface type; however, minor editorial or formatting changes are not listed here, nor highlighted in boldface type. To learn more about the organization of CLSI M100-Ed34, check the “Instructions for Use.”

CLSI M100 is updated and reviewed annually as new data and new agents become available. Use of outdated documents is strongly discouraged.

<table>
<thead>
<tr>
<th>Major Additions/Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Tables 1 and Tables 2 (general): These tables were renumbered so that each Table 1 has a corresponding Table 2.</td>
</tr>
<tr>
<td>• Table 1: A new table for suggested drugs to test and report on Neisseria meningitidis was added.</td>
</tr>
<tr>
<td>• Table 1J: A combined table for suggested drugs to test and report on anaerobes was added. Previously, these suggestions were listed in separate gram-negative and gram-positive tables.</td>
</tr>
<tr>
<td>• Table 2A-2: A new table with breakpoints specific to Salmonella and Shigella spp. was added. Table 2A-1 no longer addresses these organism groups.</td>
</tr>
<tr>
<td>• Tables 2, Tables 3, and former Appendix E: In previous editions of CLSI M100, dosage regimens were listed in Tables 2, 3E-2 (now 3F-2), 3E-3 (now 3F-3), and former Appendix E.</td>
</tr>
<tr>
<td>– Dosage regimens were removed from all Tables 2 and Tables 3F-2 and 3F-3.</td>
</tr>
<tr>
<td>– Former Appendix E was reformatted, relocated to follow the Tables 2 containing breakpoints, and renamed “Table 2 Dosages. Antimicrobial Agent Dosage Regimens Used to Establish Susceptible or Susceptible-Dose Dependent Breakpoints” (referred to as “Table 2 Dosages” throughout).</td>
</tr>
<tr>
<td>• Tables 3 (general): These tables were renumbered to accommodate the addition of new Table 3D.</td>
</tr>
<tr>
<td>• Table 3D: A new table describing a broth disk elution method for aztreonam plus ceftazidime-avibactam was added.</td>
</tr>
<tr>
<td>• Table 3F-4: A new table with breakpoints specific to testing Acinetobacter spp. directly from positive blood cultures was added.</td>
</tr>
<tr>
<td>• Table 3H: Former Tables 3G-1 and 3G-2, which described ancillary methods for testing oxacillin and cefoxitin against staphylococci, were condensed into Table 3H, which describes the oxacillin salt agar test only.</td>
</tr>
<tr>
<td>• Appendixes (general): These sections were relabeled to accommodate the relocation of former Appendix E (now Table 2 Dosages).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section/Table</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Added:</td>
</tr>
<tr>
<td>Throughou</td>
<td>“Lower” qualifier to comment that daptomycin should not be routinely reported on organisms isolated from the lower respiratory tract</td>
</tr>
<tr>
<td>Revised:</td>
<td>Suggestion for repeat testing of isolates initially susceptible that may develop resistance after initiation of therapy, from “within 3 to 4 days” to “within a few days”</td>
</tr>
</tbody>
</table>
Overview of Changes (Continued)

<table>
<thead>
<tr>
<th>Section/Table</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (Continued)</td>
<td></td>
</tr>
<tr>
<td>CLSI Breakpoint Additions Since 2010</td>
<td>Added:</td>
</tr>
<tr>
<td></td>
<td>• Sulbactam-durlobactam disk diffusion and MIC breakpoints for Acinetobacter spp.</td>
</tr>
<tr>
<td></td>
<td>• Tedizolid disk diffusion breakpoints for Staphylococcus spp. (Staphylococcus aureus only)</td>
</tr>
<tr>
<td></td>
<td>• Tedizolid disk diffusion breakpoint for Streptococcus spp. β-hemolytic group (Streptococcus pyogenes and Streptococcus agalactiae only)</td>
</tr>
<tr>
<td></td>
<td>• Tedizolid disk diffusion breakpoint for Streptococcus spp. viridans group (Streptococcus anginosus group only)</td>
</tr>
<tr>
<td>CLSI Breakpoint Revisions Since 2010</td>
<td>Revised:</td>
</tr>
<tr>
<td></td>
<td>• Minocycline disk diffusion and MIC breakpoints for Stenotrophomonas maltophilia</td>
</tr>
<tr>
<td></td>
<td>• Linezolid disk diffusion breakpoints for Staphylococcus spp.</td>
</tr>
<tr>
<td></td>
<td>Deleted:</td>
</tr>
<tr>
<td></td>
<td>• Ceftazidime disk diffusion breakpoints for Burkholderia cepacia complex</td>
</tr>
<tr>
<td></td>
<td>• Meropenem disk diffusion breakpoints for B. cepacia complex</td>
</tr>
<tr>
<td></td>
<td>• Minocycline disk diffusion breakpoints for B. cepacia complex</td>
</tr>
<tr>
<td></td>
<td>• Trimethoprim-sulfamethoxazole disk diffusion breakpoints for B. cepacia complex</td>
</tr>
<tr>
<td></td>
<td>• Ceftazidime MIC breakpoints for S. maltophilia</td>
</tr>
<tr>
<td>CLSI Archived Resources</td>
<td>Added:</td>
</tr>
<tr>
<td></td>
<td>• Breakpoints that have been eliminated from CLSI M100 (detailed in CLSI Breakpoint Revisions Since 2010)</td>
</tr>
<tr>
<td></td>
<td>• Test for Detecting Methicillin (Oxacillin) Resistance in Staphylococcus spp. table content related to detection of mecA-mediated resistance using cefoxitin or oxacillin (former Tables 3G-1 and 3G-2, revised to Table 3H)</td>
</tr>
<tr>
<td></td>
<td>• QC range that has been eliminated from CLSI M100</td>
</tr>
<tr>
<td>CLSI Reference Methods vs Commercial Methods and CLSI vs US Food and Drug Administration Breakpoints</td>
<td>Deleted:</td>
</tr>
<tr>
<td></td>
<td>• Final paragraph that referenced verification of breakpoints</td>
</tr>
<tr>
<td>NOTE: CLSI now provides or is in the process of updating and developing additional documents for validation and verification of susceptibility breakpoints.</td>
<td></td>
</tr>
<tr>
<td>Tables 1. Antimicrobial Agents That Should Be Considered for Testing and Reporting by Microbiology Laboratories</td>
<td></td>
</tr>
<tr>
<td>Table 1B-2. Acinetobacter spp.</td>
<td>Added:</td>
</tr>
<tr>
<td></td>
<td>• Sulbactam-durlobactam to Tier 3</td>
</tr>
<tr>
<td>Table 1B-4. Stenotrophomonas maltophilia</td>
<td>Deleted:</td>
</tr>
<tr>
<td></td>
<td>• Ceftazidime</td>
</tr>
</tbody>
</table>
Overview of Changes (Continued)

<table>
<thead>
<tr>
<th>Section/Table</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables 1. (Continued)</td>
<td></td>
</tr>
</tbody>
</table>
| Table 1D. *Enterococcus* spp. | Revised:
- Footnote d regarding susceptibility to penicillin |
| Table 1H-1. *Streptococcus* spp. β-Hemolytic Group | Added:
- Reference corresponding to intrapartum prophylaxis recommendations
Revised:
- Footnote b regarding intrapartum prophylaxis recommendations |
| Table 1I. *Neisseria meningitidis* | New table |
| Table 1J. Anaerobes | New combined table
Added:
- Footnote a regarding tier placement of ampicillin and penicillin for anaerobes |
| **Tables 2. Zone Diameter and/or MIC Breakpoints** | |
| Introduction to Tables 2A–2J. Zone Diameter and MIC Breakpoints | Added:
- Introductory text for Tables 2A–2J and Table 2 Dosages |
| Table 2A-1. Zone Diameter and MIC Breakpoints for Enterobacterales (excluding *Salmonella/Shigella*) | Added:
- Comment regarding meropenem-vaborbactam and Enterobacterales that harbor OXA-48
- Comment to clarify suggested action when a carbapenemase marker is detected in an Enterobacterales isolate that is cefepime S or SDD |
| Table 2A-2. Zone Diameter and MIC Breakpoints for *Salmonella* and *Shigella* spp. | New table |
| Table 2B-2. Zone Diameter and MIC Breakpoints for *Acinetobacter* spp. | Added:
- General comment regarding using positive blood culture broth as an inoculum for direct disk diffusion testing
- Sulbactam-durlobactam disk diffusion and MIC breakpoints |
| Table 2B-3. MIC Breakpoints for *Burkholderia cepacia* complex | Deleted:
- General disk diffusion testing recommendations (disk diffusion no longer recommended for *B. cepacia*)
- Ceftazidime disk diffusion breakpoints
- Meropenem disk diffusion breakpoints
- Minocycline disk diffusion breakpoints
- Trimethoprim-sulfamethoxazole disk diffusion breakpoints |
<table>
<thead>
<tr>
<th>Section/Table</th>
<th>Changes</th>
</tr>
</thead>
</table>
| **Table 2B. Zone Diameter and MIC Breakpoints for Stenotrophomonas maltophilia** | Added:
• Comment regarding trimethoprim-sulfamethoxazole antimicrobial therapy
Revised:
• Minocycline disk diffusion and MIC breakpoints
Deleted:
• Ceftazidime MIC breakpoints |
| **Table 2C. Zone Diameter and MIC Breakpoints for Staphylococcus spp.** | Added:
• Tedizolid disk diffusion breakpoints (S. aureus)
Revised:
• Linezolid disk diffusion breakpoints
• Table describing methods or targets for detection of methicillin (oxacillin)-resistant Staphylococcus spp.
• Text explaining mecA, cefoxitin, and oxacillin and associated testing relationships
Deleted:
• Comment regarding MIC confirmation requirement for staphylococci resistant to linezolid by disk diffusion and requirement to read disk diffusion zones using transmitted light |
| **Table 2H. Zone Diameter and MIC Breakpoints for Streptococcus spp.** | Added:
• Reference corresponding to intrapartum prophylaxis recommendations
• Tedizolid disk diffusion breakpoint (S. pyogenes and S. agalactiae only)
Revised:
• Comment regarding intrapartum prophylaxis recommendations |
| **Table 2H-2. Zone Diameter and MIC Breakpoints for Streptococcus spp. Viridans Group** | Added:
• Tedizolid disk diffusion breakpoint (S. anginosus group only) |
| **Table 2 Dosages. Antimicrobial Agent Dosage Regimens Used to Establish Susceptible or Susceptible-Dose Dependent Breakpoints** | New table (referred to as “Table 2 Dosages” throughout)
Added:
• Dosage for sulbactam-durlobactam for Acinetobacter spp.
• Dosage for minocycline for S. maltophilia
• Dosage for ceftriaxone for MSSA |
<table>
<thead>
<tr>
<th>Section/Table</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables 3. Specialized Resistance Testing</td>
<td></td>
</tr>
</tbody>
</table>
| Table 3B. CarbaNP Test for Suspected Carbapenemase Production in Enterobacterales and *Pseudomonas aeruginosa* | Added:
 - Reference pertaining to performance of the test |
| Table 3C. Modified Carbapenem Inactivation Methods for Suspected Carbapenemase Production in Enterobacterales and *Pseudomonas aeruginosa* | Revised:
 - Test interpretation criterion from positive, negative, “indeterminate” to positive, negative, “inconclusive” |
| Table 3D. Aztreonam Plus Ceftazidime-Avibactam Broth Disk Elution Method | New table |
| Table 3F-1. Test for Performing Disk Diffusion Directly From Positive Blood Culture Broth | Added:
 - Breakpoint Additions/Revisions Since 2021 table for disk diffusion directly from positive blood culture broth
 - Table to include testing *Acinetobacter* spp. directly from positive blood cultures |
| Table 3F-2. Zone Diameter Disk Diffusion Breakpoints for Enterobacterales Direct From Blood Culture | Added:
 - Tobramycin 8-10 hour and 16-18 hour breakpoints
 - General comment regarding aztreonam, ceftazidime, and tobramycin breakpoints
 - SDD column in table |
| Table 3F-3. Zone Diameter Disk Diffusion Breakpoints for *Pseudomonas aeruginosa* Direct From Blood Culture | Added:
 - Cefepime 16-18 hour and tobramycin 8-10 hour and 16-18 hour breakpoints
 - Comment regarding cefepime confirmatory MIC testing
 - SDD column in table |
| Table 3F-4. Zone Diameter Disk Diffusion Breakpoints for *Acinetobacter* spp. Direct From Blood Culture | New table |
| Table 3H. Oxacillin Salt Agar Test for Detecting Methicillin (Oxacillin) Resistance in *Staphylococcus aureus* | Deleted:
 - Content related to routine disk diffusion and MIC testing |
Overview of Changes (Continued)

<table>
<thead>
<tr>
<th>Section/Table</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables 3. (Continued)</td>
<td></td>
</tr>
</tbody>
</table>
| Table 3J. Tests for Detecting Inducible Clindamycin Resistance in *Staphylococcus* spp., *Streptococcus pneumoniae*, and *Streptococcus* spp. β-Hemolytic Group | Added:
• Reference corresponding to intrapartum prophylaxis recommendations
Revised:
• Footnote b regarding intrapartum prophylaxis recommendations
• Reference pertaining to prevention of perinatal group B streptococcal disease updated to the American College of Obstetricians and Gynecologists guidelines |

| **Tables 4. Disk Diffusion QC Ranges and Associated Tables** | |
| Table 4A-1. Disk Diffusion QC Ranges for Nonfastidious Organisms and Antimicrobial Agents Excluding β-Lactam Combination Agents | Added:
• Footnote c regarding *S. aureus* ATCC® 43300 as a supplemental QC strain
Revised:
• Linezolid QC range for *S. aureus* ATCC® 25923
• Tedizolid QC range for *S. aureus* ATCC® 25923
Deleted:
• Footnote regarding reading zones of inhibition for linezolid and tedizolid for *S. aureus* ATCC® 25923 using transmitted light |

| Table 4A-2. Disk Diffusion QC Ranges for Nonfastidious Organisms and β-Lactam Combination Agents | Added:
• Column headers to highlight QC organisms recommended for routine QC testing |

| **Tables 5. MIC QC Ranges and Associated Tables** | |
| Table 5A-1. MIC QC Ranges for Nonfastidious Organisms and Antimicrobial Agents Excluding β-Lactam Combination Agents | Added:
• Footnote e regarding *S. aureus* ATCC® 43300 as a supplemental QC strain
• Footnote l regarding colistin QC organism alternatives to *P. aeruginosa* ATCC® 27853
• Footnote u regarding polymyxin B QC range for *E. coli* NCTC 13846
• Uplegan QC ranges for *E. coli* ATCC® 25922 and *P. aeruginosa* ATCC® 27853
Revised:
• Aztreonam QC range for *E. coli* ATCC® 25922
• Colistin QC range for *P. aeruginosa* ATCC® 27853
• Footnote o and associated figures regarding exebacase QC range for *S. aureus* ATCC® 29213 and additional testing guidance
Deleted:
• Colistin QC range for *E. coli* ATCC® 25922 |
Overview of Changes (Continued)

<table>
<thead>
<tr>
<th>Section/Table</th>
<th>Changes</th>
</tr>
</thead>
</table>
| **Tables 5. (Continued)** | Added:
| Table 5A-2. MIC QC Ranges for Nonfastidious Organisms and β-Lactam Combination Agents | • Column headers to highlight QC organisms recommended for routine QC testing
| | • Imipenem-funobactam QC ranges for:
| | – E. coli ATCC® 25922
| | – P. aeruginosa ATCC® 27853
| | – Klebsiella pneumoniae ATCC® 700603
| | – K. pneumoniae ATCC® BAA-1705™
| Revised:
| | • Aztreonam QC ranges for:
| | – E. coli ATCC® 25922
| | – K. pneumoniae ATCC® 700603 |
| **Tables 6. Preparing Antimicrobial Agent Stock Solutions** | Added:
| Table 6A. Solvents and Diluents for Preparing Stock Solutions of Antimicrobial Agents | • Funobactam
| | • Upleganan |
| Table 6C. Preparing Solutions and Media Containing Combinations of Antimicrobial Agents | Added:
| | • Imipenem-funobactam |
| **Appendixes** | Revised:
| Appendix B. Intrinsic Resistance, B1. Enterobacterales | Deleted:
| | • Footnote g regarding Serratia marcescens and elevated MICs to tobramycin |
| Appendix C. QC Strains for Antimicrobial Susceptibility Tests | Added:
| | • S. coli AR Bank #0348
| | • Oxacillin MIC testing for MIC tests for S. aureus ATCC® 43300 |
| Appendix G. Using Molecular Assays for Resistance Detection | Revised:
| | • Table column headers |
| Table G3. Reporting Results From ESBL Resistance and Carbapenemase Molecular Tests for Enterobacterales | Added:
<p>| | • Text to clarify suggested action when a carbapenemase marker is detected in an Enterobacterales isolate that is cefepime S or SDD |</p>
<table>
<thead>
<tr>
<th>Section/Table</th>
<th>Changes</th>
</tr>
</thead>
</table>
| Appendix H. Cefiderocol Broth Preparation and Reading Broth Microdilution Minimal Inhibitory Concentration End Points, H3. Determining Broth Microdilution End Points | Added: • Figures showing determination of broth microdilution end points for cefiderocol
Revised: • Steps for reading and interpreting broth microdilution end points for cefiderocol, including figures showing determination of end points |
| Glossaries | |
| Glossary I (Part 1). β-Lactams: Class and Subclass Designations and Generic Names | Added: • Imipenem-funobactam |
| Glossary I (Part 2). Non β-Lactams: Class and Subclass Designations and Generic Names | Added: • Upleganan |
| Glossary II. Antimicrobial Agent Abbreviations, Routes of Administration, and Drug Class | Added: • Imipenem-funobactam
• Upleganan |

Abbreviations: AR, antimicrobial resistance; ATCC®, American Type Culture Collection; MIC, minimal inhibitory concentration; MSSA, methicillin (oxacillin) susceptible Staphylococcus aureus; NCTC, National Collection of Type Cultures; QC, quality control; S, susceptible; SDD, susceptible-dose dependent

Footnote
a. ATCC® is a registered trademark of the American Type Culture Collection.
Summary of CLSI Processes for Establishing Breakpoints and QC Ranges

The Clinical and Laboratory Standards Institute (CLSI) is an international, voluntary, not-for-profit, interdisciplinary, standards-developing, and educational organization accredited by the American National Standards Institute that develops and promotes the use of consensus-developed standards and guidelines within the healthcare community. These consensus standards and guidelines are developed in an open and consensus-seeking forum to cover critical areas of diagnostic testing and patient healthcare. CLSI is open to anyone or any organization that has an interest in diagnostic testing and patient care. Information about CLSI can be found at www.clsi.org.

The CLSI Subcommittee on Antimicrobial Susceptibility Testing reviews data from a variety of sources and studies (e.g., in vitro, pharmacokinetics/pharmacodynamics, and clinical studies) to establish antimicrobial susceptibility test methods, breakpoints, and QC parameters. The details of the data necessary to establish breakpoints, QC parameters, and how the data are presented for evaluation are described in CLSI M23.

Over time, a microorganism's susceptibility to an antimicrobial agent may decrease, resulting in a lack of clinical efficacy and/or safety. In addition, microbiological methods and QC parameters may be refined to ensure more accurate and better performance of susceptibility test methods. Because of these types of changes, CLSI continually monitors and updates information in its documents. Although CLSI standards and guidelines are developed using the most current information available at the time, the field of science and medicine is always changing; therefore, standards and guidelines should be used in conjunction with clinical judgment, current knowledge, and clinically relevant laboratory test results to guide patient treatment.

Additional information, updates, and changes in this document are found in the meeting summary minutes of the CLSI Subcommittee on Antimicrobial Susceptibility Testing at https://clsi.org/meetings/ast-file-resources/.
Instructions for Use of Tables

These instructions apply to:

- Tables 1A through 1J: suggested tiers of antimicrobial agents that should be considered for testing and reporting by microbiology laboratories. These suggestions include clinical efficacy, current consensus recommendations for first-choice and alternative drugs, and US Food and Drug Administration (FDA) clinical indications for use. In other countries, placement of antimicrobial agents in Tables 1A through 1J should be based on available drugs approved for clinical use by relevant regulatory organizations.

- Tables 2A through 2J: tables for each organism group that contain:
 - Recommended testing conditions
 - Routine QC recommendations (also see CLSI M02 and CLSI M07)
 - General comments for testing the organism group and specific comments for testing particular agent/organism combinations
 - Agents that should be considered for routine testing and reporting by medical microbiology laboratories, as specified in Tables 1A through 1J (test/report Tiers 1, 2, 3, and 4), including agents reported only on organisms isolated from the urinary tract (designated by “U”)
 - Agents that are appropriate for the respective organism group but are not listed in Tables 1 and would generally not warrant routine testing by a medical microbiology laboratory in the United States (designated with an asterisk as “other”; designated with “Inv.” for “investigational” [not yet FDA approved]), including agents reported only on organisms isolated from the urinary tract (designated by “U”)
 - Zone diameter and minimal inhibitory concentration (MIC) breakpoints

- Tables 1J and 2J: tables containing specific recommendations for testing and reporting results on anaerobes and some of the information listed in the bullets above

- Tables 3A through 3L: tables describing tests to detect particular resistance types in specific organisms or organism groups
Table 1B-1. *Pseudomonas aeruginosa*

<table>
<thead>
<tr>
<th>Tier 1: Antimicrobial agents that are appropriate for routine, primary testing and reporting</th>
<th>Tier 2: Antimicrobial agents that are appropriate for routine, primary testing but may be reported following cascade reporting rules established at each institution</th>
<th>Tier 3: Antimicrobial agents that are appropriate for routine, primary testing in institutions that serve patients at high risk for MDROs but should only be reported following cascade reporting rules established at each institution</th>
<th>Tier 4: Antimicrobial agents that may warrant testing and reporting by clinician request if antimicrobial agents in other tiers are not optimal because of various factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftazidime</td>
<td>Imipenem</td>
<td>Cefiderocol</td>
<td></td>
</tr>
<tr>
<td>Cefepime</td>
<td>Meropenem</td>
<td>Ceftazidime-avibactam</td>
<td></td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td></td>
<td>Ceftolozane-tazobactam</td>
<td></td>
</tr>
<tr>
<td>Tobramycin</td>
<td></td>
<td>Imipenem-relebactam</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levofloxacin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine Only</td>
<td></td>
<td>Aztreonam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amikacin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: MDRO, multidrug-resistant organism.
Table 1B-5. Other Non-Enterobacterales

<table>
<thead>
<tr>
<th>Tier 1: Antimicrobial agents that are appropriate for routine, primary testing and reporting</th>
<th>Tier 2: Antimicrobial agents that are appropriate for routine, primary testing but may be reported following cascade reporting rules established at each institution</th>
<th>Tier 3: Antimicrobial agents that are appropriate for routine, primary testing in institutions that serve patients at high risk for MDROs but should only be reported following cascade reporting rules established at each institution</th>
<th>Tier 4: Antimicrobial agents that may warrant testing and reporting by clinician request if antimicrobial agents in other tiers are not optimal because of various factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftazidime</td>
<td>Cefepime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>Imipenem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobramycin</td>
<td>Meropenem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td>Amikacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aztreonam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levofloxacin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minocycline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine Only</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Tetracycline | | | Cefotaxime
| | | Ceftriaxone |

Abbreviations: MDRO, multidrug-resistant organism; MIC, minimal inhibitory concentration.

Footnotes:

a. Other non-Enterobacterales include *Pseudomonas* spp. and other nonfastidious, glucose-nonfermenting, gram-negative bacilli but exclude *Pseudomonas aeruginosa*, *Acinetobacter* spp., *Burkholderia cepacia* complex, and *Stenotrophomonas maltophilia*. Refer to each respective Table 1 for suggested antimicrobial agents to test and report.

b. MIC testing only; disk diffusion test is unreliable.

c. Organisms that are susceptible to tetracycline are also considered susceptible to doxycycline and minocycline. However, some organisms that are intermediate or resistant to tetracycline may be susceptible to doxycycline, minocycline, or both.
Table 1H-2. *Streptococcus* spp. Viridans Group

<table>
<thead>
<tr>
<th>Tier 1: Antimicrobial agents that are appropriate for routine, primary testing and reporting</th>
<th>Tier 2: Antimicrobial agents that are appropriate for routine, primary testing but may be reported following cascade reporting rules established at each institution</th>
<th>Tier 3: Antimicrobial agents that are appropriate for routine, primary testing in institutions that serve patients at high risk for MDROs but should only be reported following cascade reporting rules established at each institution</th>
<th>Tier 4: Antimicrobial agents that may warrant testing and reporting by clinician request if antimicrobial agents in other tiers are not optimal because of various factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin<sup>a,b</sup></td>
<td></td>
<td></td>
<td>Vancomycin</td>
</tr>
<tr>
<td>Penicillin<sup>a,b</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td></td>
<td></td>
<td>Linezolid<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tedizolid<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dalbavancin<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oritavancin<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Telavancin<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ceftolozane-tazobactam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clindamycin<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Erythromycin<sup>d,e</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Levofloxacin</td>
</tr>
</tbody>
</table>

Abbreviations: MDRO, multidrug-resistant organism; MIC, minimal inhibitory concentration.

Footnotes

a. MIC testing only; disk diffusion test is unreliable.

b. **Rx:** Penicillin- or ampicillin-intermediate isolates may necessitate combined therapy with an aminoglycoside for bactericidal action.

c. Report only on *S. anginosus* group (including *S. anginosus*, *S. intermedius*, and *S. constellatus*).

d. Not routinely reported on organisms isolated from urinary tract.

e. Susceptibility and resistance to azithromycin and clarithromycin can be predicted by testing erythromycin.